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Abstract

This is a compilation of a lot of quizzes, tests, and exams, and many of their solutions, from
some of the calculus courses taught by the author at Trent University. Typos and other
errors have been preserved for your enjoyment!

Most of the content of this compilation can have no claim to originality and should properly
be in the public domain. (It is very unlikely that, say, there is any integral worked out here
that had never been worked out before or that was worked out here in an essentially new
way.) Any original content, plus such trivialities as the arrangement of the material, is

Copyright c© 2011 Stefan Bilaniuk

and is licensed under the Creative Commons Attribution 2.5 Canada License.

To view a copy of this license, visit http://creativecommons.org/licenses/by/2.5/ca/ or send
a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California
94041, U.S.A. (The short version is that you can do whatever you like with material so
licensed, so long as you acknowledge where it came from.)

This compilation was was assembled with LATEX, using the fullpage, hyperref, and graphicx
packages. The original quizzes, tests, exams, and solutions collected in this work were in-
cluded as pdf images, and were originally typeset using AMS-TEX. Various software, most
frequently AppleWorks and Maple, was used to create the diagrams and graphs.
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Mathematics 110 – Calculus of one variable
Trent University 2001-2002

Quizzes

Quiz #1. Friday, 21 September, 2001. [15 minutes]

1. Sketch the graph of a function f(x) with domain (−1, 2) such that lim
x→2

f(x) = 1 but

lim
x→−1

f(x) does not exist. [4]

2. Use the ε − δ definition of limits to verify that lim
x→π

3 = 3. [6]

Quiz #2. Friday, 28 September, 2001. [15 minutes]

Evaluate the following limits, if they exist.

1. lim
x→−1

x + 1

x2 − 1
[5] 2. lim

x→1

x + 1

x2 − 1
[5]

Quiz #3. Friday, 5 October, 2001. [20 minutes]

1. Is g(x) =





x2 − 6x + 9

x − 3
x "= 3

0 x = 3
continuous at x = 3? [5]

2. For which values of c does lim
x→∞

13

cx2 + 41
exist? [5]

Quiz #3. (Late version.) Friday, 5 October, 2001. [20 minutes]

1. For which values of the constant c is the function f(x) =

{
cex x ≥ 0

c − x x < 3
continuous

at x = 0? [5]

2. Compute lim
x→∞

(x + 13)2

2x2 + 1
x

, if it exists. [5]

Quiz #4. Friday, 12 October, 2001. [10 minutes]

1. Use the definition of the derivative to find f ′(x) if f(x) =
5

7x
. [10]

Quiz #5. Friday, 19 October, 2001. [17 minutes]

Compute
dy

dx
for each of the following:

1. y =
2x + 1

x2
[3] 2. y = ln (cos(x)) [3] 3. y = (x + 1)5e−5x [4]

Quiz #6. Friday, 2 November, 2001. [20 minutes]

Find
dy

dx
. . .

1. . . . at the point that y = 3 and x = 1 if y2 + xy + x = 13. [4]

2. . . . in terms of x if exy = x. [3]

3. . . . in terms of x if y = x3x. [3]
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Quiz #7. Friday, 9 November, 2001. [13 minutes]

1. Find all the maxima and minima of f(x) = x2e−x on (−∞,∞) and determine which
are absolute. [10]

Quiz #8. Friday, 23 November, 2001. [15 minutes]

1. A spherical balloon is being inflated at a rate of 1 m3/s. How is the diameter of the
balloon changing at the instant that the radius of the balloon is 2 m? [10]
[The volume of a sphere of radius r is V = 4

3
πr3.]

Quiz #9. Friday, 30 November, 2001. [20 minutes]

1. Use the Right-hand Rule to compute
3∫
0

(
2x2 + 1

)
dx. [6]

[You may need to know that
n∑

i=1

i2 =
n(n + 1)(2n + 1)

6
.]

2. Set up and evaluate the Riemann sum for
2∫
0

(3x +1)dx corresponding to the partition

x0 = 0, x1 = 2
3 , x2 = 4

3 , x3 = 2, with x∗
1 = 1

3 , x∗
2 = 1, and x∗

3 = 5
3 . [4]

Quiz #9. (Late version.) Friday, 30 November, 2001. [20 minutes]

1. Use the Right-hand Rule to compute
2∫
1

(x + 1)dx. [6]

[You may need to know that
n∑

i=1

i =
n(n + 1)

2
.]

2. Set up and evaluate the Riemann sum for
4∫
0

x2dx corresponding to the partition x0 = 0,

x1 = 1, x2 = 2, x3 = 3, x4 = 4, with x∗
1 = 0, x∗

2 = 2, x∗
3 = 2, and x∗

4 = 4. [4]

Quiz #10. Friday, 7 December, 2001. [20 minutes]

Given that
4∫
1

xdx = 7.5 and
4∫
1

x2 dx = 21, use the properties of definite integrals to:

1. Evaluate
4∫
1

(x + 1)2 dx. [5]

2. Find upper and lower bounds for
4∫
1

x3/2 dx. [5]

Quiz #10. (Late version.) Friday, 7 December, 2001. [20 minutes]

1. Without evaluating them, put the following definite integrals in order, from smallest
to largest. [5]

∫ 2

0

√
x2 + 1 dx

∫ 1

0

xdx

∫ 1

0

√
x2 + 1 dx

∫ 1

0

x3 dx

∫ 2

0

(x + 3)dx

2. Write down (you need not evaluate it) a definite integral(s) representing the area of
the region bounded by the curves y = x − x3 and y = x3 − x. [5]
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Quiz #11. Friday, 11 January, 2002. [15 minutes]

1. Compute the indefinite integral
∫ (

x2 + x + 1
)3

(4x + 2)dx. [5]

2. Find the area under the graph of f(x) = sin(x) cos(x) for 0 ≤ x ≤ π
2 . [5]

Quiz #12. Friday, 18 January, 2002. [15 minutes]

1. Compute
e∫
1

ln(x2)
x

dx. [5]

2. Find the area of the region between the curves y = x3 − x and y = x − x3. [5]

Quiz #12. (Late version.) Friday, 18 January, 2002. [15 minutes]

1. Compute
ln(2)∫
1

ex

e2x+1 dx. [5]

2. Find the area of the region bounded below by the curve y = x2 − 1 and above by the
curve y = cos

(
π
2 x

)
, where −1 ≤ x ≤ 1. [5]

Quiz #13. Friday, 25 January, 2002. [19 minutes]

1. Find the volume of the solid obtained by revolving the region in the first quadrant
bounded by y = 1

x , y = x, and x = 2 about the x-axis. [10]

Quiz #14. Friday, 1 February, 2002. [17 minutes]

1. Suppose the region bounded above by y = 1 and below by y = x2 is revolved about
the line x = 2. Sketch the resulting solid and find its volume. [10]

Quiz #15. Friday, 15 February, 2002. [25 minutes]

Evaluate each of the following integrals.

1.

∫ π/4

0

tan2(x)dx [4] 2.

∫ √
x2 + 4x + 5 dx [6]

Quiz #16. Friday, 1 March, 2002. [25 minutes]

1. Evaluate the following integral:
∫

x2 − 2x − 6

(x2 + 2x + 5) (x − 1)
dx

Quiz #17. Friday, 8 March, 2002. [25 minutes]

1. Evaluate the following integral:
∫ ∞

2

1

x(x − 1)2
dx

Quiz #18. Friday, 15 March, 2002. [18 minutes]

Determine whether each of the following series converges or diverges.

1.
∞∑

n=0

[
1

n + 1
+

3n

3n + 1

]
[4] 2.

∞∑

n=0

253

3n + 1
[6]
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Bonus Quiz. Monday, 18 March, 2002. [15 minutes]

Compute any two of 1–3.

1. lim
t→∞

te−t [5] 2.

∫ ∞

0

te−t dt [5] 3.
∞∑

n=0

1

n2 + 3n + 2
[5]

Quiz #19. Friday, 22 March, 2002. [20 minutes]

Determine whether each of the following series converges or diverges.

1.
∞∑

n=1

1

nn
[5] 2.

∞∑

n=0

4n + 12

n2 + 6n + 13
[5]

Quiz #19. (Alternate version.) Friday, 22 March, 2002. [20 minutes]

Consider the series ∞∑

n=0

arctan(n + 1)

n2 + 2n + 2

Determine whether this series converges or diverges using:

1. The Comparison Test. [5]

2. The Integral Test. [5]

Quiz #20. Tuesday, 2 April, 2002. [10 minutes]

1. Determine whether the series
∞∑

n=0

(−1)n + cos(nπ)

n + 1
converges absolutely, converges

conditionally, or diverges. [10]

Quiz #20. (Alternate version.) Tuesday, 2 April, 2002. [10 minutes]

1. Determine whether the series
∞∑

n=0

(−1)n+1 + sin
(
nπ + π

2

)

n + 1
converges absolutely, con-

verges conditionally, or diverges. [10]

Quiz #21. Friday, 5 April, 2002. [10 minutes]

1. Find a power series which, when it converges, equals f(x) =
3x2

(1 − x3)
2 . [10]

Quiz #21. (Alternate version.) Friday, 5 April, 2002. [10 minutes]

1. Find a function which is equal to the power series
∞∑

n=0

(−1)nxn+1

n!
(when the series

converges). [10]
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Mathematics 110 – Calculus of one variable
Trent University, 2001-2002

Test #1
Friday, 16 November, 2001

Time: 50 minutes

1. Do any two of a-c. [10 = 2 × 5 ea.]

a. Use the ε− δ definition of limits to verify that lim
x→2

(5− x) = 3.

b. Use the definition of the derivative to verify that f ′(2) = 5 if f(x) = 2x2−3x+4.

c. Determine whether f(x) =

{ x− 1

x2 − 1
x 6= 1

41 x = 1
is continuous at a = 1 or not.

2. Find
dy

dx
in any three of a-d. [12 = 3 × 4 ea.]

a. y = 4x b. y = e−x cos(x) c. y = sin(cos(−x)) d. ln(xy) = 0

3. Do any two of a-c. [8 = 2 × 4 ea.]

a. Find the equation of the tangent line to y = arctan(x) at the point
(
1, π4

)
.

b. How many functions h(x) are there such that h′(x) = h(x)?

c. Draw the graph of a function f(x) which is continuous on the domain (0,∞) such
that lim

x→0
f(x) =∞ and with a local maximum at x = 5 as its only critical point,

or explain why there cannot be such a function.

4. Find the intercepts, maxima and minima, inflection points, and vertical and horizontal

asymptotes of f(x) =
x

x2 + 1
and sketch the graph of f(x) based on this information.

[10]
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Mathematics 110 – Calculus of one variable
Trent University, 2001-2002

Test #2
Friday, 8 February, 2002

Time: 50 minutes

1. Compute any three of the integrals a-e. [12 = 3 × 4 ea.]

a.

∫ π/2

−π/2
cos3(x) dx b.

∫
x2ln(x) dx c.

∫ 1

0

(ex)
2
dx

d.

∫
e2xln

(
e2x + 1

)

e2x + 1
dx e.

∫ e

1

(ln(x))
2
dx

2. Do any two of a-c. [8 = 2 × 4 ea.]

a. Compute
1∫
0

(2x+ 3) dx using the Right-hand Rule.

b. Compute
dy

dx
if y =

x2∫
0

√
t dt (where x ≥ 0) without evaluating the integral.

c. Compute
1∫

−1

√
1− x2 dx by interpreting it as an area.

3. Water is poured at a rate of 1 m3/min into a conical tank (set up point down) 2 m
high and with radius 1 m at the top. How quickly is the water rising in the tank at
the instant that it is 1 m deep over the tip of the cone? [8]

(The volume of a cone of height h and radius r is 1
3πr

2h.)

4. Consider the region in the first quadrant with upper boundary y = x2 and lower
boundary y = x3, and also the solid obtained by rotating this region about the y-axis.

a. Sketch the region and find its area. [4]

b. Sketch the solid and find its volume. [7]

c. What is the average area of either a washer or a shell (your pick!) for the solid?
[1]
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Mathematics 110 – Calculus of one variable
Final Examination

Trent University, 24 April, 2002

Time: 3 hours Brought to you by Stefan Bilaniuk.

Instructions: Show all your work and justify all your conclusions. If in doubt about
something, ask!

Aids: Calculator; 8.5′′ × 11′′ aid sheet or the pamphlet Formula for Success; one brain.

Part I. Do all four of 1 – 4.

1. Find
dy

dx
in any three of a – e. [9 = 3 × 3 ea.]

a. y = x2ln(x) − 1 b. y =
ln(x)

x2
+ x c. sin2(y) = e−x2

d. y =

∫ 0

x

cos
(
t2

)
dt e. y =

√
sec2 (arctan(x)) − 1

2. Evaluate any three of the integrals a – e. [12 = 3 × 4 ea.]

a.

∫
2x + 3√
1 − x2

dx b.

∫ π/4

−π/4

arctan(x)dx c.

∫
cos2(t)dt

d.

∫ ∞

1

1

x3 + x
dx e.

∫
1

x2 + 2x + 5
dx

3. Evaluate any three of the limits a – e. [9 = 3 × 3 ea.]

a. lim
x→−1

x2 + 2x + 1

x + 1
b. lim

n→∞
2n

4n + π
c. lim

x→0

arctan(x)

x

d. lim
n→∞

n2 + 2n + 2

2n + 2
e. lim

x→π

sin(x)

x − π

4. Determine whether the given series converges absolutely, converges conditionally, or
diverges in any three of a – e. [12 = 3 × 4 ea.]

a.
∞∑

n=2

2

nln (n2)
b.

∞∑

n=0

(−1)n(n + 1)

n2 + 3n + 9
c.

∞∑

n=1

(−1)4n

2n + 3

d.

∞∑

n=0

(−2)n

n!
e.

∞∑

n=0

arctan(−n)

5n

1
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Part II. Do both of 5 and 6.

5. Find the domain, all maximum, minimum, and inflection points, and all vertical and
horizontal asymptotes of f(x) = xln(x), and sketch its graph. [14]

6. Consider the region in the first quadrant bounded by y = sin(x) and y =
2

π
x.

a. Sketch the region. [2]

b. Sketch the solid obtained by revolving the region about the y-axis. [3]

c. Find the volume of the solid. [7]

Part III. Do one of 7 or 8.

7. Find the MacLaurin series of sin(x) and determine its radius of convergence. [12]

8. Find a function which is equal to 2x + 3x2 + 8x3 + 15x4 + 32x5 + 63x6 + 128x7 + · · · ,
at least when this power series converges. (Note that the coefficient of xn is 2n when
n is odd and 2n − 1 when n is even.) [12]

Part IV. Do one of 9 or 10.

9. Use the ε − δ definition of limits to verify that lim
x→−3

x2 − 9

x − 3
= 0. [10]

10. A happy face is painted on the surface of a spherical balloon. The face expands as the
balloon is inflated at a rate of 10 litres/sec. If the distance between the eyes is 10 cm
at the instant that the diameter of the balloon is 20 cm , how is the distance between
the eyes changing at the same instant? [10]

[Total = 90]

Part V. Bonus!

4213 = 6×9. Write a little poem about calculus or mathematics in general. [2]

I hope you’ve had fun in MATH 110! Have a good summer!

2
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Mathematics 110 – Calculus of one variable
Trent University 2002-2003

§A Quizzes

Quiz #1. Wednesday, 18 September, 2002. [10 minutes]

12:00 Seminar

1. Compute lim
x→2

x2 − x − 2

x − 2
or show that this limit does not exist. [5]

2. Sketch the graph of a function f(x) which is defined for all x and for which lim
x→0

f(x) =

1, lim
x→2+

f(x) does not exist, and lim
x→2−

f(x) = 4. [5]

13:00 Seminar

1. Compute lim
x→2−

x2 − x + 2

x − 2
or show that this limit does not exist. [5]

2. Sketch the graph of a function g(x) which is defined for all x, and for which lim
x→0

g(x) =

∞, lim
x→2

g(x) does not exist, and g(x) does not have an asymptote at x = 2. [5]

Quiz #2. Wednesday, 25 September, 2002. [10 minutes]

12:00 Seminar

1. Use the ε − δ definition of limits to verify that lim
x→3

(5x − 7) = 8. [10]

13:00 Seminar

1. Use the ε − δ definition of limits to verify that lim
x→2

(3 − 2x) = −1. [10]

Quiz #3. Wednesday, 2 October, 2002. [10 minutes]

12:00 Seminar

1. For which values of the constant c is the function

f(x) =

{
ecx x ≥ 0

cx + 1 x < 0

continuous at x = 0? Why? [10]

13:00 Seminar

1. For which values of the constant c is the function

f(x) =

{
ecx x ≥ 0

c(x + 1) x < 0

continuous at x = 0? Why? [10]

1
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Quiz #4. Wednesday, 9 October, 2002. [12 minutes]

12:00 Seminar

Suppose

f(x) =





x x < 0

0 x = 0

2x2 + x x > 0

.

1. Use the definition of the derivative to check whether f ′(0) exists and compute it if it
does. [7]

2. Compute f ′(1) (any way you like). [3]

13:00 Seminar

Suppose g(x) =
1

x + 1
. Compute g′(x) using

1. the rules for computing derivatives [3] , and

2. the definition of the derivative. [7]

Quiz #5. Wednesday, 16 October, 2002. [10 minutes]

12:00 Seminar

Compute
d

dx
5
√

x using

1. the Power Rule [2] , and

2. the fact that f(x) = 5√x is the inverse function of g(x) = x5. [8]

13:00 Seminar

1. Compute
d

dx
arccos(x) given that cos (arccos(x)) = x and cos2(x) + sin2(x) = 1. [10]

Quiz #6. Wednesday, 30 October, 2002. [10 minutes]

12:00 Seminar

1. Find the absolute and local maxima and minima of f(x) = x3 +2x2 −x−2 on [−2, 2].
[10]

13:00 Seminar

1. Find the absolute and local maxima and minima of f(x) = x3 −3x2 −x+3 on [−2, 2].
[10]

Quiz #7. Wednesday, 6 November, 2002. [15 minutes]

12:00 Seminar

1. Find the intercepts, critical and inflection points, and horizontal asymptotes of f(x) =
(x − 2)ex and sketch its graph. [10]

13:00 Seminar

1. Find the intercepts, critical and inflection points, and horizontal asymptotes of h(x) =
(x + 1)e−x and sketch its graph. [10]

2
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Quiz #8. Wednesday, 27 November, 2002. [15 minutes]

12:00 Seminar

1. Compute: ∫ eπ

1

1

x
sin (ln(x)) dx [5]

2. What definite integral does the Right-hand Rule limit

lim
n→∞

n∑

i=1

(
1 +

i

n

)
· 1

n

correspond to? [5]

13:00 Seminar

1. Compute: ∫ π/4

0

tan(x)

cos2(x)
dx [5]

2. What definite integral does the Right-hand Rule limit

lim
n→∞

n∑

i=1

(
2i

n
− 1

)
· 1

n

correspond to? [5]

Quiz #9. Wednesday, 4 December, 2002. [15 minutes]

12:00 Seminar

1. Find the area of the region enclosed by y = −x2 and y = x2 − 2x. [10]

13:00 Seminar

1. Find the area of the region enclosed by y = (x − 2)2 + 1 = x2 − 4x + 5 and y = x + 1.
[10]

Quiz #10. Wednesday, 8 January, 2003. [25 minutes]

12:00 Seminar

1. Sketch the solid obtained by rotating the region bounded by y = 0 and y = cos(x) for
π
2 ≤ x ≤ 3π

2 about the y-axis and find its volume. [10]

13:00 Seminar

1. Sketch the solid obtained by rotating the region bounded by y = −1 and y = cos(x)
for 0 ≤ x ≤ π about the y-axis and find its volume. [10]

Quiz #11. Wednesday, 15 January, 2003. [20 minutes]

12:00 Seminar

1. Compute

∫
1

1 − x2
dx. [10]

3
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13:00 Seminar

1. Compute

∫
x2

√
1 − x2

dx. [10]

Quiz #12. Wednesday, 22 January, 2003. [20 minutes]

12:00 Seminar

1. Compute

∫
3x2 + 4x + 2

x3 + 2x2 + 2x
dx. [10]

13:00 Seminar

1. Compute

∫
2x + 1

x3 + 2x2 + x
dx. [10]

Quiz #13. Wednesday, 29 January, 2003. [15 minutes]

12:00 Seminar

1. Compute

∫ ∞

−∞
e−|x| dx or show that it does not converge. [10]

13:00 Seminar

1. Compute

∫ 1

−1

x + 1
3
√

x
dx or show that it does not converge. [10]

Quiz #14. Wednesday, 5 February, 2003. [20 minutes]

12:00 Seminar

1. Sketch the solid obtained by rotating the region bounded by x = 0, y = 4 and y = x2

for 0 ≤ x ≤ 2 about the y-axis. [2]

2. Compute the surface area of this solid. [8]

13:00 Seminar

1. Sketch the curve given by the parametric equations x = 1 + cos(t) and y = sin(t),
where 0 ≤ t ≤ 2π. [3]

2. Compute the arc-length of this curve using a suitable integral. [7]

Quiz #15. Wednesday, 26 February, 2003. [20 minutes]

12:00 Seminar

1. Graph the polar curve r = sin(2θ), 0 ≤ θ ≤ 2π. [4]

2. Find the area of the region enclosed by this curve. [6]

13:00 Seminar

1. Graph the polar curve r = cos(θ), 0 ≤ θ ≤ 2π. [4]

2. Find the arc-length of this curve. [6]

4
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Quiz #16. Wednesday, 5 March, 2003. [15 minutes]

12:00 Seminar

Let ak =
1

(k + 1)(k + 2)
and sn =

n∑

k=0

ak.

1. Find a formula for sn in terms of n. [5]

2. Does
∞∑

k=0

ak converge? If so, what does it converge to? [5]

13:00 Seminar

Let ak = ln

(
k

k + 1

)
and sn =

n∑

k=0

ak.

1. Find a formula for sn in terms of n. [5]

2. Does

∞∑

k=0

ak converge? If so, what does it converge to? [5]

Quiz #17. Wednesday, 12 March, 2003. [15 minutes]

12:00 Seminar

Determine whether each of the following series converges or diverges:

1.

∞∑

n=0

e−n [5] 2.

∞∑

n=1

1

arctan(n)
[5]

13:00 Seminar

Determine whether each of the following series converges or diverges:

1.
∞∑

n=0

1

n + 1
[5] 2.

∞∑

n=1

21/n2

[5]

Quiz #18. Wednesday, 19 March, 2003. [15 minutes]

12:00 Seminar

Determine whether each of the following series converges absolutely, converges condi-
tionally, or diverges:

1.
∞∑

n=0

(−1)n2n

n2 + 2
[5] 2.

∞∑

n=1

n!(−1)n

nn
[5]

13:00 Seminar

Determine whether each of the following series converges absolutely, converges condi-
tionally, or diverges:

1.
∞∑

n=0

(−1)n
(
2n2 + 3n + 4

)

3n2 + 4n + 5
[5] 2.

∞∑

n=1

cos(nπ)

n2
[5]

5
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Bonus Quiz. Friday, 21 March, 2003. [15 minutes]

1. A smiley face is drawn on the surface of a balloon which is being inflated at a rate of
10 cm3/s. At the instant that the radius of the balloon is 10 cm the eyes are 10 cm
apart, as measured inside the balloon. How is the distance between them changing
at this moment? [10]

Quiz #19. Wednesday, 26 March, 2003. [20 minutes]

12:00 Seminar

Consider the power series
∞∑

n=0

2nx2n

n!
.

1. For which values of x does this series converge? [6]

2. This series is equal to a (reasonably nice) function. What is it? Why? [4]

13:00 Seminar

Consider the power series
∞∑

n=0

2nxn+1

n + 1
.

1. For which values of x does this series converge? [6]

2. This series is equal to a (reasonably nice) function. What is it? Why? [4]

Quiz #20. Wednesday, 2 April, 2003. [20 minutes]

12:00 Seminar

Let f(x) = sin(π − 2x).

1. Find the Taylor series at a = 0 of f(x). [6]

2. Find the radius and interval of convergence of this Taylor series. [4]

13:00 Seminar

Let f(x) = ln(2 + x).

1. Find the Taylor series at a = 0 of f(x). [6]

2. Find the radius and interval of convergence of this Taylor series. [4]

6
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Mathematics 110 – Calculus of one variable
Trent University, 2002-2003

Test #1 - Section A
Wednesday, 13 November, 2002

Time: 50 minutes

Instructions

• Please show all your work, make every effort to keep your solution neat, and put the
final answer in a box.

• If you have a question, ask it !
• You may use a calculator and one of an 8.5”× 11” aid sheet or the pamphlet Formula

for Success.
• Please return the question sheets with your answers and do not discuss the test

with anyone who may write it later, on pain of violating MATH 110’s policy on
plagiarism.

1. Do any one of a – c. [10/100]

a. Use the ε− δ definition of limits to verify that lim
x→1

(7x+ 3) = 10.

b. Use the limit definition of the derivative to verify that
d

dx
(ex) = ex.

(You may assume that lim
h→0

eh−1
h = 1.)

c. Compute lim
x→0

x

tan(2x)
.

2. Do any two of a – c. [15/100 each]

a. Find the equation of the tangent line to y =
√
x at x = 4.

b. Is the function f(x) = x · |x| differentiable at x = 0? Why or why not?

c. Use the limit definition of the derivative to verify the Sum Rule, i.e. that if
h(x) = f(x) + g(x), then h′(x) = f ′(x) + g′(x).

Questions 3 and 4 are on page 2.

1
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Mathematics 110 – Calculus of one variable
Trent University, 2002-2003

Test #2 - Section A
Wednesday, 12 February, 2003

Time: 50 minutes

Instructions

• Please show all your work, make every effort to keep your solution neat, and put the
final answer in a box.

• If you have a question, ask it !
• You may use a calculator and one of an 8.5”× 11” aid sheet or the pamphlet Formula

for Success.
• Please do not discuss the test with anyone who may write it later nor show

them the question sheets, on pain of violating MATH 110’s policy on plagiarism.

1. Compute any three of the integrals in parts a-f. [36 = 3 × 12 each]

a.

∫ 1

0

arctan(x)dx b.

∫ ee

e

ln (ln(x))

xln(x)
dx c.

∫
1

x2 − 3x + 2
dx

d.

∫
1

x2 + 2x + 2
dx e.

∫ π/4

0

sec4(x)dx f.

∫ ∞

2

1

x4
dx

2. Do any two of parts a-d. [24 = 2 × 12 each]

a. Compute
d

dx

(∫ cos(x)

1

arccos(t)dt

)
.

b. Give both a description and a sketch of the region whose area is computed by the

integral

1∫

−1

√
1− x2 dx.

c. Find the area of the region bounded by y = x3 − x and y = 3x.

d. Compute

∫ 1

0

(x + 1)dx using the Right-hand Rule.

3. Consider the solid obtained by rotating the region bounded by y = x2 and y = 1
about the line x = 2.

a. Sketch the solid. [5]

b. Find the volume of the solid. [20]

4. Find the arc-length of the curve given by the parametric equations x =
t2√
2

and

y =
t3

3
, where 0 ≤ t ≤ 1. [15]

[Total = 100]
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Mathematics 110 – Calculus of one variable
§A Final Examination

Trent University, 23 April, 2002

Time: 3 hours Brought to you by Stefan B!lan"k.

Instructions: Show all your work and justify all your answers. If in doubt, ask!

Aids: Calculator; an 8.5′′ ×11′′ aid sheet or the pamphlet Formula for Success; one brain.

Part I. Do all three of 1 – 3.

1. Find
dy

dx
(in terms of x and/or y) in any three of a – f. [15 = 3 × 5 ea.]

a. y =
x2 − 1

x2 + 1
b. y =

∫ x

−x

e4t dt c.
y = cos(t)
x = sin(t)

d. y = arcsin(3x) e. x2 + 2xy + y2 = 1 f. y = ln
(
x2 − 2x + 1

)

2. Evaluate any three of the integrals a – f. [15 = 3 × 5 ea.]

a.

∫
x + 2

x2 + 4x + 5
dx b.

∫ ∞

0

1

t2 + 1
dt c.

∫
1

x2 − 5x + 6
dx

d.

∫ e

1

ln(y)dy e.

∫
1√

4 − x2
dx f.

∫ π

0

cos2(w) sin(w)dw

3. Do any five of a – j. [25 = 5 × 5 ea.]

a. Does

∞∑

n=1

(−1)n arctan(n)

n2
converge absolutely, converge conditionally, or diverge?

b. Evaluate lim
x→0

x

ex − 1
or show that the limit does not exist.

c. Find the arc-length of the curve given by y = 1 − t2 and x = 1+ t2 for 0 ≤ t ≤ 1.

d. What is the sum of the series
∞∑

n=1

(x − 1)n

n!
when it converges?

e. Sketch the region described by 0 ≤ r ≤ csc(θ) and π/4 ≤ θ ≤ π/2 in polar
coordinates and find its area.

f. Use an ε − δ argument to verify that lim
t→3

(2x − 4) = 2.

g. Determine the radius of convergence of
∞∑

n=0

3n+1

2n
xn.

h. For which values of c is f(x) =

{
cos(x) x ≤ π

cx x > π
continuous at x = π?

i. Find the absolute maximum and minimum points, if any, of f(x) = x3 − 3x on
the interval −2 ≤ x ≤ 2.

j. Give an integral corresponding to the Right-hand Rule sum
n∑

i=1

2i

n
tan

(
1 +

i

n

)
.

1
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Part II. Do one of 4 or 5.

4. Find the domain, all maximum, minimum, and inflection points, and all vertical and

horizontal asymptotes of g(x) = e−x2

, and sketch its graph. [15]

5. Sand is poured onto a level floor at the rate of 60 l/min . It forms a conical pile whose
height is equal to the radius of the base. How fast is the height of the pile increasing
when the pile is 2 m high? [15]
[The volume of a cone of height h and base radius r is 1

3πr2h.]

Part III. Do one of 6 or 7.

6. Consider the curve y =
√

x, 0 ≤ x ≤ 4.

a. Sketch the curve. [1]

b. Sketch the surface obtained by revolving the curve about the x-axis. [2]

c. Find the area of the surface. [12]

7. Consider the region in the first quadrant bounded by y =
√

x and y =
x

2
.

a. Sketch the region. [2]

b. Sketch the solid obtained by revolving the region about the y-axis. [2]

c. Find the volume of the solid. [11]

Part IV. Do one of 8 or 9.

8. Consider the power series
∞∑

n=1

(−2)nnxn−1 = −2 + 8x − 24x2 + 64x3 − 160x4 + · · ·

a. Find the radius and interval of convergence of this power series. [9]

b. What function has this power series as its Taylor series at a = 0? [6]

9. Let f(x) = e2x−2.

a. Find the Taylor series at a = 1 of f(x). [10]

b. Find the radius and interval of convergence of this Taylor series. [5]

[Total = 100]

Part MMIII. Bonus!

-1. Write a little poem about calculus or mathematics in general. [2]

-2. Find the surface area of a cone with base radius r and height h. For maximum credit,
do this without using any calculus. [2]

I hope you’ve had a good time! Have a good summer!

2
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Mathematics 110 – Calculus of one variable
Trent University 2003-2004

§A Quizzes

Quiz #1. Friday, 19 September, 2003. [10 minutes]

12:00 Seminar

1. How close does x have to be to 1 in order to guarantee that 1
x is within 1

10 of 1? [10]

13:00 Seminar

1. Find a value of δ > 0 that ensures that −1 <
√

x − 4 < 1 whenever −δ < x − 16 < δ.
[10]

Leftovers

1. Use the ε − δ definition of limits to verify that that lim
x→0

1 = 1. [10]

Hint: Try any δ > 0 you like . . .

Quiz #2. Monday, 29 September, 2003. [10 minutes]

1. Use the ε − δ definition of limits to verify that that lim
x→0

sin2(x) = 0. [10]

Hint: You may use the fact that | sin(x)| ≤ |x|.
Quiz #3. Friday, 3 October, 2003. [15 minutes]

12:00 Seminar

Evaluate

1. lim
x→∞

x − 2

x2 − 3x + 2
[5] 2. lim

x→0

ex − 1

e2x − 1
[5]

13:00 Seminar

Evaluate

1. lim
x→1

x2 + x − 2

x2 + 2x − 3
[5] 2. lim

x→∞
(x + 4)2

41x2 + 43x + 47
[5]

Leftovers

1. For what value(s) of the constant c does lim
x→2

(cx + 3) = lim
t→∞

ct2 + 3 + c

t2 + 1
? [10]

Quiz #4. Friday, 10 October, 2003. [10 minutes]

12:00 Seminar

1. Use the limit definition of the derivative to find f ′(0) if f(x) = (x + 1)3. [10]

13:00 Seminar

1. Use the limit definition of the derivative to find f ′(x) if f(x) =
1

x
. [10]

Leftovers

1. Use the limit definition of the derivative to find f ′(x) if f(x) = x2 − 3x. [10]

1
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Quiz #5. Friday, 17 October, 2003. [10 minutes]

12:00 Seminar

Find dy
dx in each of the following:

1. y = ln (sec(x) + tan(x)) [3] 2. exy = 2 [3] 3. y =
x2 + 4x + 4

x + 3
[4]

13:00 Seminar

Find dy
dx in each of the following:

1. y =
(
1 + x2

)
arctan(x) [3] 2. tan(x + y) = 1 [3] 3. y =

ex + 1

e2x − 1
[4]

Leftovers

Find dy
dx in each of the following:

1. y =
√

1 − e2x [3] 2. y =
tan(x)

cos(x)
[3] 3. ln(x + y) = x [4]

Quiz #6. Friday, 31 October, 2003. [15 minutes]

12:00 Seminar

1. A ladder 5 m long rests against a vertical wall. If the top of the ladder slips down
at a rate of 1 m/s, how is angle between the bottom of the ladder and the ground
changing when the top of the ladder is 4m above the ground? [10]

13:00 Seminar

1. A searchlight is on an island 8 km from the nearest point, call it P , on the mainland
(which has a straight shore). The searchlight makes one revolution each minute. How
swiftly is the light beam moving along the shore when it is 6 km from and moving
towards P? [10]

Leftovers

1. Kypalo, walking along a straight path at 4 m/s, passes a tree 3 m from the path. How
is the distance between Kypalo and the tree changing 1 s after the Kypalo passes the
tree? [10]

Quiz #7. Friday, 7 November, 2003. [15 minutes]

1. Find all the intercepts, the maximum, minimum, and inflection points, and the hori-
zontal and vertical asymptotes of the following function:

12:00: f(x) =
x

x2 + 1
13:00: g(x) =

x − 1

x + 1
Leftovers: h(x) =

x2 + 1

x
[10]

2
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Quiz #8. Friday, 21 November, 2003. [12 minutes]

1. Use the Right-hand Rule to compute the area under y = f(x) for 0 ≤ x ≤ 2. [10]

12:00: f(x) = (x + 1)2 − 1 13:00: f(x) = x2 − 4x + 5

Leftovers: f(x) = 2x2 + x + 3

Hint: You may use the facts that

n∑

i=1

i =
n(n + 1)

2
and

n∑

i=1

i2 =
n(n + 1)(2n + 1)

6
.

Quiz #9. Friday, 28 November, 2003. [12 minutes]

1. Compute the following integrals. [10]

12:00: a.
∫ sin(x)

cos2(x) dx b.
∫ √

ln(x)

6x dx

13:00: a.
∫ sin(

√
x)

4
√

x
dx b.

∫ (
sin2(x) cos(x) + cos(x)

)
dx

Leftovers: a.
∫ 4 arctan3(x)

1+x2 dx b.
∫

(ex − 1)
2
ex dx

Quiz #10. Friday, 5 December, 2003. [10 minutes]

1. Compute the following integral. [10]

12:00:

∫ π/4

0

tan(x)ln (sec(x)) dx 13:00:

∫ 1

0

(x − 1)2

x2 + 1
dx

Leftovers:

∫ 1

0

(
x2 + 1

)15
x3 dx

Quiz #11. Friday, 9 January, 2004. [12 minutes]

1. Compute the following integral. [10]

12:00:

∫
sin(2x) sin(x)dx 13:00:

∫ (
tan2(x) − 1

)
dx

Leftovers:

∫
sec3/2(x) tan(x)dx

Quiz #12. Friday, 16 January, 2004. [15 minutes]

1. Compute the following integral. [10]

12:00:

∫ √
x2 − 4

x2
dx 13:00:

∫ 2

0

x
√

4 − x2 dx

Leftovers:

∫
x3

√
x2 + 9

dx

3
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Quiz #13. Friday, 23 January, 2004. [15 minutes]

1. Compute the following integral. [10]

12:00:

∫
5

(x − 1) (x2 + 2x + 2)
dx 13:00:

∫
4

(x2 − 1) (x − 1)
dx

Leftovers:

∫
x2 − 2x + 1

x2 − x − 2
dx

Quiz #14. Monday, 2 February, 2004. [15 minutes]

Lecture

1. Find the volume of the solid obtained by rotating the region bounded by y = x3,
y = 0, and x = 1 about the y-axis. [10]

Leftovers

1. Find the volume of the solid obtained by rotating the region bounded by y = cos(x)
and y = 0 for π

2 ≤ x ≤ 3π
2 about the y-axis. [10]

Quiz #15. Friday, 6 February, 2004. [15 minutes]

12:00

1. Find the area of the surface obtained by rotating the curve y = x3

3 , 0 ≤ x ≤ 1, about
the x-axis. [10]

13:00

1. Find the arc-length of the curve y = −ln (cos(x)), 0 ≤ x ≤ π
4 . [10]

Leftovers

1. Find the area of the surface obtained by rotating the curve y = ln(x), 1 ≤ x ≤ e,
about the y-axis. [10]

Quiz #16. Friday, 27 February, 2004. [15 minutes]

12:00

1. Sketch the polar curve r = 1 + cos(θ), 0 ≤ θ ≤ 2π. [5]
2. Find the slope of this curve at θ = π

2 . [5]

13:00

1. Sketch the region bounded by the polar curves r = θ, for 0 ≤ θ ≤ 2π, and θ = 0. [5]
2. Find the area of this region. [5]

Leftovers

1. Sketch the region bounded by the polar curves θ = 0, θ = π
4 , and r = 4 sec(θ). [5]

2. Find the area of this region. [5]

4
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Quiz #17. Friday, 5 March, 2004. [10 minutes]

12:00

Compute each of the following.

1. lim
n→∞

2n3−n [5] 2. lim
n→∞

cos(n)

n
[5]

13:00

Compute each of the following.

1. lim
n→∞

n

ln(n)
[5] 2. lim

n→∞
(−1)n n + 1

n + 2
[5]

Leftovers

Compute each of the following.

1. lim
n→∞

ne−n [5] 2. lim
n→∞

n2

n + 1
[5]

Quiz #18. Friday, 12 March, 2004. [20 minutes]

Determine whether each of the following series converges or diverges.

12:00 1.
∞∑

n=0

n

3n
[5] 2.

∞∑

n=1

n cos(nπ)

1 + ln(n)
[5]

13:00 1.
∞∑

n=1

ln(n)

n2
[5] 2.

∞∑

n=0

arctan
(
n2

)

2n + n
[5]

Leftovers 1.
∞∑

n=0

2n sin(nπ)

n2 + 1
[5] 2.

∞∑

n=1

e1/n2

n3
[5]

Quiz #19. Friday, 19 March, 2004. [15 minutes]

Determine whether the following series is absolutely convergent, conditionally conver-
gent, or divergent.

12:00 1.
∞∑

n=2

(−1)n

nln(n)
[10]

13:00 1.
∞∑

n=1

2 · 4 · 6 · . . . · (2n − 2) · (2n)

(−1)nn!
[10]

Leftovers 1.

∞∑

n=0

(−5)n+2

2n3n+1
[10]

5
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Quiz #20. Friday, 26 March, 2004. [15 minutes]

Find the radius and interval of convergence of the following power series.

12:00 1.
∞∑

n=0

(−4)nn2xn [10]

13:00 1.

∞∑

n=0

(x − 2)n

n3n
[10]

Leftovers 1.
∞∑

n=0

(3 − 2x)n

n!
[10]

Quiz #21. Friday, 2 April, 2004. [20 minutes]

Find the Taylor series centred at a of f(x) if

12:00 1. f(x) =
1√
x

and a = 4 [10]

13:00 1. f(x) = sin(x) and a =
π

2
[10]

Leftovers 1. f(x) = (x + 1)3 and a = 2 [10]

and determine its radius and interval of convergence.

6

31



Mathematics 110 – Calculus of one variable
Trent University, 2003-2004

§A – Test #1
Wednesday, 12 November, 2003

Time: 50 minutes

Instructions

• Show all your work.
• If you have a question, ask !
• You may use a calculator and either a two-sided 8.5”× 11” aid sheet or the pamphlet

Formula for Success.

1. Find
dy

dx
in any three of a-e. [12 = 3 × 4 ea.]

a. y = xln

(
1

x

)
b. x2 + 2xy + y2 − x = 1 c. y = sin

(
e
√
x
)

d. y =
2x

x+ 1
e. y = cos(2t) where t = x3 + 2x

2. Do any two of a-c. [10 = 2 × 5 each]

a. Determine whether g(x) =

{
x−1
x2−1 x 6= 1

1
2 x = 1

is continuous at x = 1 or not.

b. Use the definition of the derivative to compute f ′(1) for f(x) =
1

x
.

c. Find the equation of the tangent line to y =
√
x at x = 9.

3. Do one of a or b. [8]

a. Use the ε− δ definition of limits to verify that lim
x→2

x2 = 4.

b. Use the ε−N definition of limits to verify that lim
t→∞

1

t+ 1
= 0.

4. Find the intercepts, the maximum, minimum, and inflection points, and the vertical
and horizontal asymptotes of f(x) = xe−x

2

and sketch the graph of f(x) based on
this information. [10]

[Total = 40]
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Mathematics 110 – Calculus of one variable
Trent University, 2003-2004

Test #2 - Section A
Wednesday, 11 February, 2004

Time: 50 minutes

Instructions

• Please show all your work and make every effort to keep your solution neat and legible.
• If you have a question, ask it !
• You may use a calculator and one of an 8.5”× 11” aid sheet or the pamphlet Formula

for Success.

1. Compute any three of the integrals in parts a-f. [12 = 3 × 4 each]

a.

∫ π/2

0

cos3(x)dx b.

∫
1

x2 + 3x+ 2
dx c.

∫ ∞

2

1√
x
dx

d.

∫
arctan(x)

x2 + 1
dx e.

∫
ln
(
x2
)
dx f.

∫ 2

1

1

x2 − 2x+ 2
dx

2. Do any two of parts a-d. [8 = 2 × 4 each]

a. Find a definite integral computed by the Right-hand Rule sum

lim
n→∞

n∑

i=0

(
1 +

i2

n2

)
· 1

n
.

b. Compute
d

dx

(∫ tan(x)

0

e
√
t dt

)
.

c. Find the area under the parametric curve given by x = 1 + t2 and y = t(1 − t)
for 0 ≤ t ≤ 1.

d. Sketch the region whose area is computed by the integral

∫ 1

0

arctan(x)dx.

3. Find the volume of the solid obtained by rotating the region bounded by y =
1

x
,

y =
1

2
, and x = 1 about the line x = −1. [10]

4. Find the area of the surface obtained by rotating the curve y = ln(x), 0 < x ≤ 1,
about the y-axis. [10]

[Total = 40]
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Mathematics 110 – Calculus of one variable
§A Final Examination

Trent University, 8 April, 2004

Time: 3 hours Brought to you by Stefan B!lan"k.

Instructions: Show all your work and justify all your answers. If in doubt, ask!

Aids: Calculator; an 8.5′′ ×11′′ aid sheet or the pamphlet Formula for Success; one brain.

Part I. Do all three of 1 – 4.

1. Find
dy

dx
(in terms of x and/or y) in any three of a – f. [15 = 3 × 5 ea.]

a. y = x2 sin(x + 3) b. exy = 2 c. y = cos2
(
x2

)

d.
y = t2

x = t3
e. y =

∫ x2

0

√
w dw f. y =

cos(x)

1 + tan(x)

2. Evaluate any three of the integrals a – f. [15 = 3 × 5 ea.]

a.

∫ ∞

e

1

xln(x)
dx b.

∫
xe−x dx c.

∫ 1

−1

2s

1 + s4
ds

d.

∫
1√

x2 + 4
dx e.

∫ 1

0

arctan(t)dt f.

∫
3x − 3

x2 + x − 2
dx

3. Determine whether the series converges absolutely, converges conditionally, or diverges
in any two of a – d. [10 = 2 × 5 ea.]

a.
∞∑

n=1

(−1)n

n2
b.

∞∑

n=0

(3n − 2n) c.
∞∑

n=0

n

1 + n2
d.

∞∑

n=0

3−n2n cos(nπ)

4. Do any three of a – f. [15 = 3 × 5 ea.]

a. Use an ε − N argument to verify that lim
n→∞

1

n2
= 0.

b. Sketch the polar curve r = θ for −π ≤ θ ≤ π and find its slope at θ = 0.

c. Evaluate lim
x→0

x2

tan(x)
or show that the limit does not exist.

d. Use the Right-hand Rule to compute the definite integral
∫ 2

0
(x + 1) dx.

e. Find the area of the surface obtained by rotating the curve y = 2x, 0 ≤ x ≤ 2,
about the y-axis.

f. Determine whether f(x) =

{
1 − ex x ≤ 0

ln(x + 1) x > 0
is continuous at x = 0 or not.

1
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Part II. Do one of 5 or 6.

5. A container of volume 54π cm3 is made from sheet metal. Find the dimensions of
such a container which require the least amount sheet metal to make if:

a. The container is cylindrical, with a bottom but without a top. [13]

b. The container is a sphere. [2]

Hint : The volume of a cylinder of radius r and height h is πr2h; the volume of a
sphere of radius r is 4

3πr3.

6. Find the domain, all maximum, minimum, and inflection points, and all vertical and

horizontal asymptotes of f(x) =
x

1 + x2
, and sketch its graph. [15]

Part III. Do one of 7 or 8.

7. Find the surface area of a cone with height 8 cm and radius 2 cm at the base. [15]

8. Consider the region bounded above by y = sin(x) and below by y =
2

π
x for 0 ≤ x ≤ π

2
.

a. Sketch this region. [2]

b. Sketch the solid obtained by revolving this region about the x-axis. [3]

c. Find the volume of this solid. [10]

Part IV. Do one of 9 or 10.

9. Let f(x) = cos(x).

a. Find the Taylor series of f(x) centred at a = π. [8]

b. Determine the radius and interval of convergence of this Taylor series. [4]

c. Use your work for a to help find the Taylor series of g(x) = sin(x) at a = π. [3]

10. Consider the power series
∞∑

n=1

(−1)nxn+1

n + 1
.

a. Find the radius and interval of convergence of this power series. [7]

b. What function has this power series as its Taylor series at a = 0? [8]

[Total = 100]

Part i. Bonus!

sπ. Write a little poem about calculus or mathematics in general. [2]

+ι. Suppose a number of circles are drawn on a piece of paper,
dividing it up into regions whose borders are made up of
circular arcs. Prove that you can colour these regions with
only two colours in such a way that no two regions that have
a common border have the same colour. [2]

I hope that you enjoyed the course! Enjoy the summer too!

2
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Mathematics 105H – Applied calculus
Trent University, Summer 2008

Quizzes

Quiz #1. Thursday, 1 May, 2008 [10 minutes]

1. Find the equation of the line between (1, 3) and (5,−1). [2]

2. Find the equation of the line through (2, 2) perpendicular to the line in part 1. [2]

3. Sketch a graph of the lines in parts 1 and 2. [1]

Quiz #2. Tuesday, 6 May, 2008 [10 minutes]

1. Find the x- and y-intercepts (if any), and the domain and range, of f(x) = 1− 1
x , and

give a rough sketch of its graph. [5]

Quiz #3. Thursday, 8 May, 2008 [10 minutes]

Using the fact that loga(u) = t really means that at = u and the properties of
exponents, explain why each of the following equations works:

1. log2(1) = 0 [1]

2. log2 (log3(81)) = 2 [2]

3. log2(41) = log1/2

(
1
41

)
[2]

Quiz #4. Tuesday, 13 May, 2008 [10 minutes]

Do one of problems 1 and 2.

1. Use the limit definition of the derivative to compute f ′(2) for f(x) = x2 +2x−3. [10]

2. Use the limit rules to compute lim
x→−∞

x22x

(3 − x)2
. [10]

Quiz #5. Thursday, 15 May, 2008 [10 minutes]

Do any two of problems 1–3.

1. Use the limit definition of the derivative to compute f ′(x) for f(x) = 1
x . [5]

2. Compute f ′(1) if f(x) = exln
(
x7

)
. [5]

3. Find the point(s) on the graph of y = x3 − x where the graph has slope 0. [5]

Quiz #6. Thursday, 22 May, 2008 [10 minutes]

1. Find the coordinates of the point(s), if any, on the graph of y = x3 − 9x where the
graph has slope 3. [5]

Quiz #7. Tuesday, 27 May, 2008 [10 minutes]

1. Find the domain and all the intercepts, vertical and horizontal asymptotes, and local

minimum and maximum points of y =
x

1 + x2
, and sketch the graph of this function.

[5]
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Quiz #8. Thursday, 29 May, 2008 [10 minutes]

1. A spherical balloon is being filled at a rate of 1 m3/s. How is the radius of the balloon
changing at the instant that the balloon’s radius is 2 m? [5]

The volume of a sphere of radius r is V = 4
3πr3.

Quiz #9. Tuesday, 3 June, 2008 [10 minutes]

Compute two of the following three indefinite integrals. [10 = 2 × 5 each]

1.

∫
(w − 1)2 dw 2.

∫
ln(x)

x
dx 3.

∫
1 − √

x√
x

dx

Quiz #10. Thursday, 5 June, 2008 [10 minutes]

1. Find the area of the region between the x-axis and the curve y = x3−x = x(x+1)(x−1)
for −1 ≤ x ≤ 1. [5]
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Mathematics 105H – Applied calculus
Trent University, Summer 2008

MATH 105H Test
20 May, 2008

Time: 50 minutes

Instructions
• Show all your work. Legibly!
• If you have a question, ask it!
• Use the back sides of the test sheets for rough work or extra space.
• You may use a calculator, and either (both sides of) one 8.5× 11 aid sheet or a copy

(annotated as you like) of Formula for Success.

1. Do all of a–d.

a. Find the equation of the line through (0, 3) with slope 2. [2]

b. Find the tip (i.e. vertex) of the parabola y = −x2 + 2x+ 2. [2]

c. Find the coordinates of the point(s) where the line and the parabola meet. [3]

d. Sketch a graph of the line and the parabola. [3]

2. Let f(x) = 1− ex. Do all of a–d.

a. Find the x- and y-intercepts, if any, of y = f(x). [2]

b. Find the domain and range of f(x). [2]

c. Determine whether y = f(x) has any horizontal asymptotes. [4]

d. Sketch the graph of y = f(x). [2]

3. Do any two (2) of a–c.

a. Compute lim
x→−∞

1− x
1 + 2x

3x. [5] b. Compute lim
t→3

(t− 3)(t + 2)

t2 − 2t− 3
. [5]

c. Use the limit definition of the derivative to compute f ′(1) for f(x) = 2x2−4x+ 8. [5]

4. Do any two (2) of a–c.

a. Find h′(x) if h(x) = e(x
2+3)− ln(5x). [5] b. Find g′(w) if g(w) =

wln(w)

(w + 1)2
[5]

c. Find the equation of the tangent line to y = 1
2x

2 + x − 1 at x = 3. [5]

[Total = 40]
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Mathematics 105H – Applied calculus
Trent University, Summer 2008

Final Examination
Tuesday, 10 June, 2008

Time: 3 hours Brought to you by Stefan B!lan"k.

Instructions: Show all your work and justify all your answers. If in doubt, ask!

Aids: Calculator; an 8.5′′ ×11′′ aid sheet or the pamphlet Formula for Success; one brain.

Part I. Do all four of 1 – 4.

1. Do any three of a – f. [15 = 3 × 5 each]

a. Find the y-intercepts of the parabola y = x2 − 2x − 3.

b. Evaluate lim
x→0

x + 1

x2 + 2x + 1
.

c. Find the equation of the line passing through (1, 0) and parallel to y = 3x+1024.

d. Determine whether f(x) =
x

|x| is continuous at x = 0 or not.

e. Use the limit definition of the derivative to compute f ′(x) for f(x) = 1
2x2 + x.

f. Find the equation of the tangent line to y = ex at x = 0.

2. Find
dy

dx
(in terms of x and/or y) in any four of a – f. [20 = 4 × 5 each]

a. y = (x − 1)(x + 1) b. ln(x + y) = x c. y =
x

x + 2

d. y =

∫ x

1

t2 dt e. y = ex2−x f. y =
x − 1

x2 + 2x − 3

3. Evaluate any four of the integrals a – f. [20 = 4 × 5 each]

a.

∫ 2

0

3x2 dx b.

∫
tln(t)dt c.

∫ 3

2

2x − 2

x2 − 2x + 1
dx

d.

∫
x
√

1 + x2 dx e.

∫ 5

0

1

x + 5
dx f.

∫ ∞

0

2−x dx

4. Find the intercepts, domain, all maximum, minimum, and inflection points, and all

vertical and horizontal asymptotes of f(x) =
x2

x2 + 1
, and sketch its graph. [15]

1
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Part II. Do any two of 5 – 8.

5. A steel frame is to be made for a box with a square cross-section (so height = width)
that is to have a volume of 36 m3. What is the maximum volume of the box if the
total length of steel available for the frame is 16 m? [15]

6. A 10 m ladder is placed with its base on the positive x-axis and its tip on the positive
y-axis. Its base begins to slip to the right at a constant rate of 1 m/s. Determine how
the top of the ladder is moving at the instant that the base of the ladder is 6 m from
the y-axis. [15]

7. A worker sketches the curves y = x3 and y = 4x on a sheet of metal and cuts out
the region between the curves to form a metal plate. Find the area of the plate if
distances are measured in cm . [15]

8. Consider the region bounded above by y =
√

x and below by the x-axis for 0 ≤ x ≤ 4.

a. Sketch the region. [2]

b. Find the area of the region. [3]

c. Sketch the solid obtained by revolving the region about the x-axis. [2]

d. Find the volume of this solid. [8]

[Total = 100]

Part !. Bonus!

#. Write a little poem about calculus or mathematics in general. [2]

2
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Mathematics 1100Y – Calculus I: Calculus of one variable
Trent University, Summer 2010

Quizzes

Quiz #1 Wednesday, 12 May, 2010. [10 minutes]

1. Suppose the graph of y = x2 is stretched vertically by a factor of 3, and then shifted
by 2 units to the right and 1 unit down. Find the formula of the parabola with this
curve as its graph. [5]

2. Use the Limit Laws to evaluate lim
x→0

x2 − 1

x2 + 1
. [5]

Quiz #2 Monday, 17 May, 2010. [12 minutes]

Do one (1) of the following two questions.

1. Find all the vertical and horizontal asymptotes of f(x) =
x

x − 1
and give a rough

sketch of its graph. [10]

2. Use the ε–δ definition of limits to verify that lim
x→1

(3x − 1) = 2. [10]

Quiz #3 Wednesday, 19 May, 2010. [10 minutes]

1. Compute the derivative of f(x) =
x2 − 2x

x − 1
. [5]

2. Compute the derivative of g(x) = arctan (ex). [5]

Quiz #4 Wednesday, 26 May, 2010. [12 minutes]

1. Use logarithmic differentiation to compute the derivative of g(x) = xx. [5]

2. A pebble is dropped into a still pond, creating a circular ripple that moves outward
from its centre at 2 m/s . How is the area enclosed by the ripple changing at the
instant that the radius of the ripple is 3 m? [5]

(Just in case: The area of a circle with radius r is πr2.)

Quiz #5 Monday, 31 May, 2010. [15 minutes]

1. Let f(x) =
x

x2 + 1
. Find the domain and all the intercepts, vertical and horizontal

asymptotes, and local maxima and minima of f(x), and sketch its graph using this
information. [10]

1
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Quiz #6 Wednesday, 2 June, 2010. [10 minutes]

1. Use the Left-Hand Rule to compute

� 1

0

(x+1) dx, the area between the line y = x+1

and the x-axis for 0 ≤ x ≤ 1. [10]

Hint: You may need the formula
n�

i=1

i = 1 + 2 + 3 + · · · + n =
n(n + 1)

2
.

Quiz #7 Monday, 7 June, 2010. [10 minutes]

1. Compute

� 2

0

�
x2 − 2x + 1

�
dx. [10]

Quiz #8 Wednesday, 9 June, 2010. [10 minutes]

1. Find the area between y = x cos
�
x2
�

and the x-axis for −
�

π
2 ≤ x ≤

�
π
2 . [10]

Quiz #9 Monday, 14 June, 2010. [10 minutes]

The region between y = 2 − x and the x-axis, for 0 ≤ x ≤ 2, is rotated about the
y-axis. Find the volume of the resulting solid of revolution using both

1. the disk method [5] and

2. the method of cylindrical shells. [5]

Quiz #10 Wednesday, 16 June, 2010. [10 minutes]

1. Compute

� e

1

(ln(x))
2

dx. [10]

Quiz #11 Monday, 21 June, 2010. [12 minutes]

Compute each of the following integrals:

1.

� π/2

0

cos3(x) sin2(x) dx [5] 2.

�
sec3(x) dx [5]

Quiz #12 Wednesday, 23 June, 2010. [15 minutes]

Compute each of the following integrals:

1.

�
1√

4 − x2
dx [5] 2.

� 2

1

x
�

x2 − 1 dx [5]

2
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Quiz #13 Monday, 28 June, 2010. [12 minutes]

1. Compute

�
2x2 + 3

(x2 + 4) (x − 1)
dx. [10]

Quiz #14 Wednesday, 30 June, 2010. [10 minutes]

1. Compute

� ∞

0

1

x2 + 1
dx. [10]

Quiz #15 Monday, 5 July, 2010. [10 minutes]

1. Compute the arc-length of the curve y =
2

3
x3/2, where 0 ≤ x ≤ 1.

Quiz #16 Wednesday, 7 July, 2010. [15 minutes]

1. Find the arc-length of the parametric curve x = t cos(t) and y = t sin(t), where
0 ≤ t ≤ 1. [10]

Quiz #17 Monday, 12 July, 2010. [15 minutes]

1. Sketch the curve given by r = sin(θ), 0 ≤ θ ≤ π, in polar coordinates. [2]

2. Sketch the curve given by r = sin(θ), π ≤ θ ≤ 2π, in polar coordinates. [2]

3. Find the area of the region enclosed by the curve given by r = sin(θ), 0 ≤ θ ≤ π, in
polar coordinates. [6]

Bonus: Find an equation in Cartesian coordinates for the curve given by r = sin(θ),
0 ≤ θ ≤ π, in polar coordinates. [2]

Quiz #18 Wednesday, 14 July, 2010. [12 minutes]

1. Use the definition of convergence of a series to compute
∞�

n=1

1

n(n + 1)
. [10]

Hint: Note that
1

k(k + 1)
=

1

k
− 1

k + 1
.

Quiz #19 Monday, 19 July, 2010. [10 minutes]

1. Determine whether the series

∞�

n=0

1

n2 + 1
converges or diverges. [10]

Quiz #20 Wednesday, 21 July, 2010. [12 minutes]

1. Determine whether the series
∞�

n=0

cos(nπ)

1 + n
converges conditionally, converges abso-

lutely, or diverges. [10]

Quiz #21 Monday, 26 July, 2010. [15 minutes]

1. Find the radius and interval of convergence of the power series
∞�

n=0

n3n

2n+1
xn. [10]

Quiz #22 Wednesday, 28 July, 2010. [15 minutes]

1. Find the Taylor series of f(x) = ln(x) at a = 1. [10]

3
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Mathematics 1100Y – Calculus I: Calculus of one variable
Trent University, Summer 2010

Test 1
7 June, 2010

Instructions
• Show all your work. Legibly, please!
• If you have a question, ask it!
• Use the back sides of the test sheets for rough work or extra space.
• You may use a calculator and an aid sheet.

1. Do any two (2) of a–c. [10 = 2 × 5 each]

a. Find the slope of the tangent line to y = tan(x) at x = 0.

b. Use the limit definition of the derivative to compute f ′(1) for f(x) = x2.

c. Use the ε− δ definition of limits to verify that lim
x→1

(2x− 1) = 1.

2. Find dy
dx in any three (3) of a–d. [9 = 3 × 3 each]

a. y =
x

x+ 1
b. x2 + y2 = 4 c. y =

∫ x

0

t cos(3t) dt d. y = ln
(
x3
)

3. Do any two (2) of a–c. [10 = 2 × 5 each]

a. Explain why lim
x→0

x

|x| doesn’t exist.

b. A spherical balloon is being inflated at a rate of 1 m3/s. How is its radius changing at
the instant that it is equal to 2 m? [The volume of a sphere of radius r is V = 4

3πr
3.]

c. Use the Left-Hand Rule to find

∫ 3

1

x dx.

[
n−1∑
i=0

i = 0 + 1 + · · ·+ (n− 1) = n(n−1)
2

]

4. Let f(x) =
x2

x2 + 1
. Find the domain and all the intercepts, vertical and horizon-

tal asymptotes, and maxima and minima of f(x), and sketch its graph using this
information. [11]

[Total = 40]

Bonus. Find any inflection points of f(x) =
x2

x2 + 1
as well. [3]

1
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Mathematics 1100Y – Calculus I: Calculus of one variable
Trent University, Summer 2010

Test 2
5 July, 2010

Instructions
• Show all your work. Legibly, please!
• If you have a question, ask it!
• Use the back sides of the test sheets for rough work or extra space.
• You may use a calculator and an aid sheet.

1. Compute any four (4) of the integrals in parts a-f. [16 = 4 × 4 each]

a.

∫
1

4− x2 dx b.

∫
tan(x) dx c.

∫ 1

0

1√
x
dx

d.

∫
x3 + x+ 1

x2 + 1
dx e.

∫ π/4

−π/4
sec2(x) dx f.

∫
xln(x) dx

2. Do any two (2) of parts a-e. [12 = 2 × 6 each]

a. Compute

∫ 2

0

(x+ 1) dx using the Right-hand Rule.

b. Find the area of the region bounded by y = 2 + x and y = x2 for −1 ≤ x ≤ 1.

c. Without actually computing

∫ 10/π

0

arctan(x) dx, find as small an upper bound

as you can on the value of this integral.

d. Compute the arc-length of the curve y = ln (cos(x)), 0 ≤ x ≤ π/6.

e. Give a example of a function f(x) such that f(x) = 1 +

∫ x

0

f(t) dt for all x.

3. Do one (1) of parts a or b. [12]

a. Sketch the solid obtained by rotating the region bounded by y =
√
x and y = x,

where 0 ≤ x ≤ 1, about the y-axis, and find its volume.

b. Sketch the cone obtained by rotating the line y = 3x, where 0 ≤ x ≤ 2, about
the x-axis, and find its surface area.

[Total = 40]
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Mathematics 1100Y – Calculus I: Calculus of one variable
Trent University, Summer 2010

Final Examination

Time: 09:00–12:00, on Friday, 30 July, 2010. Brought to you by Stefan B�lan�k.

Instructions: Show all your work and justify all your answers. If in doubt, ask!

Aids: Calculator; one aid sheet (all sides!); one brain (no limit on active neurons).

Part I. Do all three (3) of 1–3.

1. Compute
dy

dx
as best you can in any three (3) of a–f. [15 = 3 × 5 each]

a. x2 + 3xy + y2 = 23 b. y = ln (tan(x)) c. y =

� 3

x

ln (tan(t)) dt

d. y =
ex

ex − e−x
e.

x = cos(2t)
y = sin(3t)

f. y = (x + 2)ex

2. Evaluate any three (3) of the integrals a–f. [15 = 3 × 5 each]

a.

� π/4

−π/4

tan(x) dx b.

�
1

t2 − 1
dt c.

� π

0

x cos(x) dx

d.

� �
w2 + 9 dw e.

� e

1

ln(x) dx f.

�
ex

e2x + 2ex + 1
dx

3. Do any five (5) of a–i. [25 = 5 × 5 ea.]

a. Find the volume of the solid obtained by rotating the region bounded by y =
√

x,
0 ≤ x ≤ 4, the x-axis, and x = 4, about the x-axis.

b. Use the ε− δ definition of limits to verify that lim
x→1

3x = 3.

c. Find the Taylor series of f(x) =
x2

1 − x2
at a = 0 without taking any derivatives.

d. Sketch the polar curve r = 1 + sin(θ) for 0 ≤ θ ≤ 2π.

e. Use the limit definition of the derivative to compute f �(1) for f(x) = x2.

f. Use the Right-hand Rule to compute the definite integral

� 2

1

x

2
dx.

g. Determine whether the series

∞�

n=2

(−1)n

ln(n)
converges absolutely, converges condi-

tionally, or diverges.

h. Find the radius of convergence of the power series
∞�

n=0

n2

πn
xn.

i. Compute the arc-length of the polar curve r = θ, 0 ≤ θ ≤ 1.

1
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Part II. Do any two (2) of 4–6.

4. Find the domain, all maximum, minimum, and inflection points, and all vertical and

horizontal asymptotes of f(x) = e−x2

, and sketch its graph. [15]

5. Find the area of the surface obtained by rotating the curve y = tan(x), 0 ≤ x ≤ π

4
,

about the x-axis. [15]

6. Find the volume of the solid obtained by rotating the region below y = 1 − x2,
−1 ≤ x ≤ 1, and above the x-axis about the line x = 2. [15]

Part III. Do one (1) of 7 or 8.

7. Do all three (3) of a–c.

a. Use Taylor’s formula to find the Taylor series of ex centred at a = −1. [7]

b. Determine the radius and interval of convergence of this Taylor series. [4]

c. Find the Taylor series of ex centred at a = −1 using the fact that the Taylor

series of ex centred at 0 is
∞�

n=0

xn

n!
= 1 + x +

x2

2
+

x3

6
+

x4

24
+ · · · . [4]

8. Do all three (3) of a–c. You may assume that the Taylor series of f(x) = ln(1 + x)

centred at a = 0 is
∞�

n=1

(−1)n+1

n
xn = x − x2

2
+

x3

3
− x4

4
+

x5

5
− x6

6
+ · · · .

a. Find the radius and interval of convergence of this Taylor series. [6]

b. Use this series to show that ln

�
3

2

�
=

1

2
− 1

8
+

1

24
− 1

64
+ · · · =

∞�

n=1

(−1)n+1

n2n
. [3]

c. Find an n such that Tn

�
1

2

�
=

1

2
− 1

8
+

1

24
− 1

64
+ · · · + (−1)n+1

n2n
is guaranteed

to be within 0.01 =
1

100
of ln

�
3

2

�
. [6]

[Total = 100]

Part IV - Something different. Bonus!

eiπ. Write a haiku touching on caclulus or mathmatics in general. [2]

haiku?

seventeen in three:
five and seven and five of

syllables in lines

I hope that you enjoyed the course. Enjoy the rest of the summer!

2
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Mathematics 1101Y – Calculus I: functions and calculus of one variable
Trent University, 2010–2011

Quizzes

Quiz #1. Friday, 24 Monday, 27 September, 2010. (10 minutes)

1. Find the location of the tip of the parabola y = 2x2 + 2x − 12, as well as its x- and
y-intercepts. [5]

Quiz #2. Friday, 1 October, 2010. (10 minutes)

1. Solve the equation e2x − 2ex + 1 = 0 for x.

Hint: Solve for ex first . . .

Quiz #3. Friday, 8 October, 2010. (10 minutes)

1. Evaluate the limit lim
x→1

x2 + x − 2

x − 1
, if it exists. [5]

Quiz #4. Friday, 15 October, 2010. (10 minutes)

1. Use the limit definition of the derivative to compute f �(2) if f(x) = x2 + 3x + 1. [5]

Quiz #5. Friday, 22 October Monday, 1 November, 2010. (10 minutes)

1. Find f �(x) if f(x) =
x2 + 2x

x2 + 2x + 1
. Simplify f �(x) as much as you reasonably can. [5]

Quiz #6. Friday, 5 November, 2010. (10 minutes)

1. Find
dy

dx
if y =

�
x + arctan(x). [5]

Quiz #7. Friday, 12 November, 2010. (10 minutes)

1. Find the maximum and minimum of f(x) =
x

1 + x2
on the interval [−2, 2]. [5]

Quiz #8. Friday, 26 November, 2010. (10 minutes)

1. Find an antiderivative of f(x) = 4x3 − 3 cos(x) +
1

x
. [5]

Quiz #9. Friday, 3 December, 2010. (10 minutes)

1. Compute the definite integral

� 1

0

(2x + 1) dx using the Right-hand Rule. [5]

Hint: You may assume that

n�

k=1

k = 1 + 2 + 3 + · · · + n =
n(n + 1)

2
.

Quiz #10. Friday, 10 December, 2010. (10 minutes)

1. Find the area between the graphs of f(x) = sin(x) and g(x) =
2x

π
for 0 ≤ x ≤ π

2
. [5]

Quiz #11. Friday, 14 January, 2011. (10 minutes)

1. Compute

� π/2

0

cos3(x) dx. [5]

1
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Quiz #12. Friday, 21 January, 2011. (10 minutes)

1. Compute

�
tan3(x) sec(x) dx. [5]

Quiz #13. Friday, 28 January, 2011. (10 minutes)

1. Compute

�
1√

4 + x2
dx. [5]

Quiz #14. Friday, 4 February, 2011. (15 minutes)

1. Compute

�
4x2 + 3x

(x + 2) (x2 + 1)
dx. [5]

Quiz #15. Some time or other, 2011. (15 minutes)

1. Find the area of the surface obtained by revolving the curve y =
√

1 − x2, where
0 ≤ x ≤ 1, about the y-axis. [5]

Quiz #16. Some time or other, 2011. (12 minutes)

1. Sketch the region bounded by r = tan(θ), θ = 0, and θ =
π

4
in polar coordinates and

find its area. [5]

Quiz #17. Friday, 11 March, 2011. (12 minutes)

1. Find the arc-length of the parametric curve x = sec(t), y = ln (sec(t) + tan(t)), where
0 ≤ t ≤ π

4 .

Quiz #18. Friday, 18 March, 2011. (10 minutes)

1. Compute lim
n→∞

n2

en
. [5]

Quiz #19. Friday, 25 March, 2011. (10 minutes)

1. Determine whether the series
∞�

n=0

1

n2 + 2n
converges or diverges. [5]

Quiz #20. Friday, 1 April, 2011. (15 minutes)

1. Determine whether the series
∞�

n=1

(−1)nln(n)

n
converges absolutely, converges condi-

tionally, or diverges.

Quiz #21. Friday, 8 April, 2011. (10 minutes)

1. Determine whether the series
∞�

n=1

n

2n
converges or diverges.

2
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Mathematics 1101Y – Calculus I: functions and calculus of one variable
Trent University, 2010–2011

Test #1
Friday, 19 November, 2010

Time: 50 minutes

Instructions
• Show all your work. Legibly, please!
• If you have a question, ask it!
• Use the back sides of the test sheets for rough work or extra space.
• You may use a calculator and an aid sheet.

1. Find
dy

dx
in any three (3) of a-e. [12 = 3 × 4 each]

a. y = xx b. y =
1

1 + x2
c. y = cos

(√
x
)

d. y2 + x = 1 e. y = x2e−x

2. Do any two (2) of a-d. [10 = 2 × 5 each]

a. Use the limit definition of the derivative to compute f ′(0) for f(x) = x2−3x+π.

b. Suppose f(x) =
x

sin(x)
for x 6= 0. What would f(0) have to be to make f(x)

continuous at a = 0?

c. Find the equation of the tangent line to y = x2 at the point (2, 4).

d. Use the ε− δ definition of limits to verify that lim
x→1

(2x+ 3) = 5.

3. Birds Alpha and Beta leave their nest at the same time, with Alpha flying due north
at 5 km/h and Beta flying due east at 10 km/h. How is the area of the triangle formed
by their respective positions and the nest changing 1 h after their departure? [8]

4. Find the domain and all intercepts, maxima and minima, and vertical and horizontal

asymptotes of f(x) =
x2 + 2

x2 + 1
and sketch its graph based on this information. [10]
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Mathematics 1101Y – Calculus I: functions and calculus of one variable
Trent University, 2010–2011

Test # 2
11 February, 2011
Time: 50 minutes

Instructions
• Show all your work. Legibly, please!
• If you have a question, ask it!
• Use the back sides of the test sheets for rough work or extra space.
• You may use a calculator and an aid sheet.

1. Compute any four (4) of the integrals in parts a-f. [16 = 4 × 4 each]

a.

∫
1√

x2 + 1
dx b.

∫ π/4

0

sec(x) tan(x) dx c.

∫ ∞

0

e−x dx

d.

∫
1

x2 + 3x+ 2
dx e.

∫
cos(x)

sin(x)
dx f.

∫ e

1

ln(x) dx

2. Do any two (2) of parts a-e. [12 = 2 × 6 each]

a. Compute

∫ 2

1

x3 − x2 − x+ 1

x+ 1
dx

b. Find the area between y = cos(x) and y = sin(x) for 0 ≤ x ≤ π

2
.

c. Which of

∫ 41

π

arctan
(√
x
)
dx and

∫ 41

π

arctan
(
x2
)
dx is larger? Explain why.

d. Use the Right-hand Rule to compute

∫ 2

1

x dx.

e. Find the area of the region bounded by y = 0 and y = ln(x) for 0 < x ≤ 1.

3. Do one (1) of parts a or b. [12]

a. Sketch the solid obtained by rotating the region bounded by y = x2 and y = 0,
where 0 ≤ x ≤ 2, about the y-axis, and find its volume.

b. Sketch the solid obtained by rotating the region bounded by y = x2 and y = 0,
where 0 ≤ x ≤ 2, about the x-axis, and find its volume.

[Total = 40]
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Mathematics 1101Y – Calculus I: functions and calculus of one variable
Trent University, 2010–2011

Final Examination

Time: 14:00–17:00, on Tuesday, 26 April, 2011. Brought to you by Stefan B�lan�k.
Instructions: Do parts X and Y and, if you wish, part Z. Show all your work and justify
all your answers. If in doubt about something, ask!

Aids: Calculator; one aid sheet (all sides!); one brain (10100 neuron limit).

Part X. Do all three (3) of 1–3.

1. Compute
dy

dx
as best you can in any three (3) of a–f. [15 = 3 × 5 each]

a. y = cos (ex) b. y =

� x

1

etln(t) dt c. y = xln(x)

d. y =
ln(x)

x
e. arctan(x + y) = 0 f.

x = et

y = e2t

2. Evaluate any three (3) of the integrals a–f. [15 = 3 × 5 each]

a.

�
ln(x)

x
dx b.

�
1√

z2 − 1
dz c.

� 4

1

√
x dx

d.

� 1

0

x2 + 2

x2 + 1
dx e.

�
tan2(w) dw f.

� ln(2)

0

e2t dt

3. Do any five (5) of a–i. [25 = 5 × 5 each]

a. Use the limit definition of the derivative to compute g�(0) for g(x) = 2x + 1.

b. Determine whether the series
∞�

n=2

1

nln(n)
converges or diverges.

c. Find the Taylor series of f(x) = ex+1 at a = 0.

d. Sketch the polar curve r = 1, where 0 ≤ θ ≤ 2π, and find the area of the region
it encloses.

e. Sketch the surface obtained by rotating y =
x2

2
, 0 ≤ x ≤ 2, about the y-axis, and

find its area.

f. Use the Right-hand Rule to compute the definite integral

� 1

0

4x dx.

g. Use the ε− δ definition of limits to verify that lim
x→0

(2x − 1) = −1.

h. Find the interval of convergence of the power series
∞�

n=0

x2n

n!
.

i. Sketch the solid obtained by rotating the region bounded by y = x, y = 0, and
x = 2, about the x-axis, and find its volume.

1
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Part Y. Do any three (3) of 4–7. [45 = 3 × 15 each]

4. A zombie is dropped into a still pool, creating a circular ripple that moves outward
from the point of impact at a constant speed. After 2 s the length of the ripple is
increasing at a rate of 2π m/s . How is the area enclosed by the ripple changing at
this instant?

Hint: You have (just!) enough information to work out how the radius of the ripple
changes with time.

5. Find all the intercepts, maximum, minimum, and inflection points, and all the vertical

and horizontal asymptotes of h(x) =
x

1 − x2
, and sketch its graph.

6. Show that a cone with base radius 1 and height 2 has volume 2
3π.

Hint: It’s a solid of revolution . . .

7. Do all four (4) of a–d.

a. Use Taylor’s formula to find the Taylor series of f(x) = sin(x) at a = 0. [7]

b. Determine the radius and interval of convergence of this Taylor series. [4]

c. Find the Taylor series of g(x) = x sin(x) at a = 0 by multiplying the Taylor series
for f(x) = sin(x) by x. [1]

d. Use Taylor’s formula and your series from c to compute g(16)(0). [3]

[Total = 100]

Part Z. Bonus problems! Do them (or not), if you feel like it.

ln
�

1
e

�
. Does lim

n→∞

��
n�

k=1

1

k

�
− ln(n)

�
exist? Explain why or why not. [2]

ln
�

1
1

�
. Write a haiku touching on calculus or mathematics in general. [2]

haiku?

seventeen in three:
five and seven and five of

syllables in lines

I hope that you enjoyed this course,
and even learned a thing or two. :-)

Have a great summer!

2
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Mathematics 1100Y – Calculus I: Calculus of one variable
Trent University, Summer 2011

Quizzes

Quiz #1. Wednesday, 11 May, 2011. [10 minutes]

1. Compute lim
x→−3

x + 3

x2 − 9
using the appropriate limit laws and algebra. [5]

Quiz #2. Monday, 16 May, 2011. [10 minutes]

Do one of questions 1 or 2.

1. Use the ε-δ definition of limits to verify that lim
x→1

(3x − 2) = 1. [5]

2. Find the x- and y-intercepts and all the horizontal asymptotes of f(x) =
x2

x2 + 1
, and

sketch its graph. [5]

Quiz #3. Wednesday, 18 May, 2011. [10 minutes]

1. Use the limit definition of the derivative to compute f �(a) for f(x) =
1

x
. (You may

assume that a �= 0.) [5]

Quiz #4. Wednesday, 25 May, 2011. [10 minutes]

1. Compute f �(x) for f(x) = ln

�
x

1 + x2

�
. [5]

Quiz #5. Monday, 30 May, 2011. [10 minutes]

Do one of questions 1 or 2.

1. Find
dy

dx
at the point (2, 2) on the curve defined by x =

√
x + y. [5]

2. Find
dy

dx
at x = e for y = ln (xln(x)). [5]

Quiz #6. Wednesday, 1 June, 2011. [15 minutes]

1. A 3 m long, very stretchy, bungee cord is suspended from a hook 4 m up on a wall.
The other end of the cord is grabbed by a child who runs directly away from the wall
at 2 m/s, holding the end of the cord 1 m off the ground, stretching the cord in the
process. How is the length of the cord changing at the instant that the child’s end of
the cord is 4 m away from the wall? [5]

1
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Quiz #7. Monday, 6 June, 2011. [15 minutes]

1. Find any and all intercepts, intervals of increase and decrease, local maxima and
minima, and vertical and horizontal asymptotes, of y = xe−x, and sketch this curve
based on the information you obtained. [5]

Bonus: Find any and all the points of inflection of this curve too. [1]

Hint: You may assume that lim
x→+∞

xe−x = 0. For lim
x→−∞

xe−x you’re on your own.

Quiz #8. Monday, 13 June, 2011. [10 minutes]

1. Compute lim
x→∞

x2

ex
. [5]

Quiz #9. Monday, 20 June, 2011. [10 minutes]

Do one of questions 1, 2, or 3.

1. Compute
� 2

1
(x + 1) dx using the Right-Hand Rule. [5]

Hint: You may assume that 1 + 2 + 3 + · · · + n =
n�

i=1

i = n(n+1)
2 .

2. Compute
� 3

−1
(x + 1)2 dx. [5]

3. Compute
�

sin(x) cos(x) dx. [5]

Quiz #10. Wednesday, 22 June, 2011. [10 minutes]

1. Find the area of the region between the curves y = cos(x) and y = sin(x), where
0 ≤ x ≤ π. [5]

Hint: Recall that sin
�
π
4

�
= cos

�
π
4

�
= 1√

2
.

Quiz #11. Monday, 27 June, 2011. [10 minutes]

1. Sketch the solid obtained by rotating the region bounded by y =
√

x and y = 0, where
0 ≤ x ≤ 4, about the x-axis and find its volume. [5]

Quiz #12. Wednesday, 29 June, 2011. [10 minutes]

1. Sketch the solid obtained by rotating the region between y = ex and y = 1, where
0 ≤ x ≤ 1, about the y-axis and find its volume. [5]

Quiz #13. Monday, 4 July, 2011. [10 minutes]

1. Compute

�
sec3(x) tan3(x) dx. [5]

Quiz #14. Monday, 11 July, 2011. [15 minutes]

1. Compute

�
1

x4 + x2
dx. [5]

Quiz #15. Wednesday, 13 July, 2011. [10 minutes]

1. Compute

� ∞

1

1

x2
dx. [5]

2

59



Quiz #16. Monday, 18 July, 2011. [12 minutes]

Do one of questions 1 or 2.

1. Find the arc-length of the curve y =
2

3
x3/2, where 0 ≤ x ≤ 3. [5]

2. Find the area of the surface of revolution obtained by rotating the curve y = 1− 1

2
x2,

where 0 ≤ x ≤
√

3, about the y-axis. [5]

Quiz #17. Wednesday, 19 July, 2011. [12 minutes]

Do one of questions 1 or 2.

1. Sketch the curve r = θ, 0 ≤ θ ≤ π, in polar coordinates and the area of the region
between the curve and the origin. [5]

2. For which values of x does the series
∞�

n=0
xn+2 = x2 + x3 + x4 + · · · converge? What

is the sum when it does converge? [5]

Quiz #18. Monday, 25 July, 2011. [12 minutes]

1. Determine whether the series

∞�

n=1

1

n2 + 2n
converges or diverges. [5]

Quiz #19. Wednesday, 27 July, 2011. [12 minutes]

Do one of questions 1 or 2.

1. Determine whether the series
∞�

n=1

(−2)n

(n + 1)!
converges absolutely, converges condition-

ally, or diverges. [5]

2. Determine whether the series
∞�

n=1

(−1)nen

n
converges absolutely, converges condition-

ally, or diverges. [5]

3
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Mathematics 1100Y – Calculus I: Calculus of one variable
Trent University, Summer 2011

MATH 1100Y Test #1
Wednesday, 8 June, 2011

Time: 50 minutes

Instructions
• Show all your work. Legibly, please!
• If you have a question, ask it!
• Use the back sides of the test sheets for rough work or extra space.
• You may use a calculator and an aid sheet.

1. Find dy
dx in any three (3) of a–d. [9 = 3 × 3 each]

a. y =
(
x2 + 1

)3
b. ln(x+ y) = 0 c. y = x2ex d. y =

tan(x)

sec(x)

2. Do any two (2) of a–c. [10 = 2 × 5 each]

a. Use the ε− δ definition of limits to verify that lim
x→2

(x+ 1) = 3.

b. Use the limit definition of the derivative to compute f ′(0) for f(x) = x3 + x.

c. Compute lim
x→3

x2 − 9

x− 3
.

3. Do any two (2) of a–c. [12 = 2 × 6 each]

a. Each side of a square is increasing at a rate of 3 cm/s. At what rate is the area
of the square increasing at the instant that the sides are 6 cm long?

b. f(x) = e−1/x
2

= e−(x
−2) has a removable discontinuity at x = 0. What should

the value of f(0) be to make the function continuous at x = 0?

c. What is the smallest possible perimeter of a rectangle with area 36 cm2?

4. Let f(x) =
√
x2 + 1. Find any and all intercepts, vertical and horizontal asymptotes,

and maxima and minima of f(x), and sketch its graph using this information. [9]

[Total = 40]

Bonus. Simplify cos (arcsin(x)) as much as you can. [1]

61



Mathematics 1100Y – Calculus I: Calculus of one variable
Trent University, Summer 2011

MATH 1100Y Test 2
6 July, 2011

Time: 50 minutes

Instructions
• Show all your work. Legibly, please!
• If you have a question, ask it!
• Use the extra page and the back sides of the test sheets for rough work or extra space.
• You may use a calculator and an aid sheet.

1. Compute any four (4) of the integrals in parts a-f. [16 = 4 × 4 each]

a.

∫
tan2(x) dx b.

∫ 3/2

0

2(2x+ 1)3/2 dx c.

∫
xex dx

d.

∫ π

0

x cos(x) dx e.

∫
sec3(x) tan(x) dx f.

∫ 1

0

(
x2 + 2x+ 3

)
dx

2. Do any two (2) of parts a-e. [12 = 2 × 6 each]

a. Compute

∫ 3

0

√
9− x2 dx. What does this integral represent?

b. Sketch the solid obtained by rotating the region bounded by y = x, y = 0, and
x = 2 about the y-axis, and find its volume.

c. Give an example of a function f(x) with f ′(x) = 1−
∫ x

0

f(t) dt for all x.

d. Sketch the region between y = sin(x) and y = − sin(x) for 0 ≤ x ≤ 2π, and find
its area.

e. Compute

∫ 2

1

x dx using the Right-hand Rule.

3. The region between y =
√

1− x2 and y = 2x − 2, where 0 ≤ x ≤ 1, is rotated about
the y-axis to make a solid. Do part a and one (1) of parts b or c.

a. Sketch the solid of revolution described above. [3]

b. Find the volume of the solid using the disk/washer method. [9]

c. Find the volume of the solid using the method of cylindrical shells. [9]

[Total = 40]
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Mathematics 1100Y – Calculus I: Calculus of one variable
Trent University, Summer 2011

Final Examination

Time: 09:00–12:00, on Wednesday, 3 August, 2011. Brought to you by Stefan.

Instructions: Show all your work and justify all your answers. If in doubt, ask!

Aids: Calculator; two (2) aid sheets; one (1) brain [may be caffeinated].

Part I. Do all three (3) of 1–3.

1. Compute
dy

dx
as best you can in any three (3) of a–f. [15 = 3 × 5 each]

a. x = ex+y b. y =

� −x

0

tet dt c. y = x2ln(x)

d. y =
x

cos(x)
e. y = sec2 (arctan(x)) f. y = sin (ex)

2. Evaluate any three (3) of the integrals a–f. [15 = 3 × 5 each]

a.

�
2x√

4 − x2
dx b.

� π/2

0

sin(z) cos(z) dz c.

�
x2ln(x) dx

d.

� ln(3)

−∞
es ds e.

�
1√

1 + x2
dx f.

� 2

1

1

w2 + w
dw

3. Do any five (5) of a–i. [25 = 5 × 5 ea.]

a. Determine whether the series

∞�

n=2

(−1)nn2

3n
converges absolutely, converges con-

ditionally, or diverges.

b. Why must the arc-length of y = arctan(x), 0 ≤ x ≤ 13, be less than 13 +
π

2
?

c. Find a power series equal to f(x) =
x

1 + x
(when the series converges) without

using Taylor’s formula.

d. Find the area of the region between the origin and the polar curve r =
π

2
+ θ,

where 0 ≤ θ ≤ π.

e. Find the interval of convergence of the power series

∞�

n=0

n

2n
xn.

f. Use the limit definition of the derivative to compute f �(0) for f(x) = 2x − 1.

g. Compute the area of the surface obtained by rotating the the curve y =
x2

2
,

where 0 ≤ x ≤
√

3, about the y-axis.

h. Use the Right-hand Rule to compute the definite integral

� 3

0

(x + 1) dx.

i. Use the ε− δ definition of limits to verify that lim
x→2

(x + 1) = 3.

1

63



Part II. Do any three (3) of 4–8.

4. Find the domain, all maximum, minimum, and inflection points, and all vertical and

horizontal asymptotes of f(x) =
x2

x2 + 1
, and sketch its graph. [15]

5. Do both of a and b.

a. Verify that

� �
x2 − 1 dx =

1

2
x
�

x2 − 1 − 1

2
ln
�
x +

�
x2 − 1

�
+ C. [7]

b. Find the arc-length of y =
1

2
x
�

x2 − 1 − 1

2
ln
�
x +

�
x2 − 1

�
for 1 ≤ x ≤ 3. [8]

6. Sketch the solid obtained by rotating the square with corners at (1, 0), (1, 1), (2, 0),
and (2, 1) about the y-axis and find its volume and surface area. [15]

7. Do all three (3) of a–c.

a. Use Taylor’s formula to find the Taylor series at 0 of f(x) = ln(x + 1). [7]

b. Determine the radius and interval of convergence of this Taylor series. [4]

c. Use your answer to part a to find the Taylor series at 0 of
1

x + 1
without using

Taylor’s formula. [4]

8. A spherical balloon is being inflated at a rate of 1 m3/s. How is its surface area
changing at the instant that its volume is 36 m3? [15]

[Recall that a sphere of radius r has volume 4
3πr3 and surface area 4πr2.]

[Total = 100]

Part MMXI - Bonus problems.

13. Show that ln (sec(x) − tan(x)) = −ln (sec(x) + tan(x)). [2]

41. Write an original poem touching on calculus or mathematics in general. [2]

I hope that you had some fun with this!
Get some rest now . . .

2
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Part II

Some Answers
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Mathematics 110 – Calculus of one variable
Trent University 2001-2002

Skeletal Solutions to the Quizzes

Quiz #1. Friday, 21 September, 2001. [15 minutes]

1. Sketch the graph of a function f(x) with domain (−1, 2) such that lim
x→2

f(x) = 1 but

lim
x→−1

f(x) does not exist. [4]

2. Use the ε − δ definition of limits to verify that lim
x→π

3 = 3. [6]

Solutions.

1. The graph here does the job:

This is the graph of f(x) = 3
x+1 for −1 < x < 2, which does the job since lim

x→−1−
3

x+1 = ∞
and lim

x→2+

3
x+1 = 3

3 = 1. !

2. We need to check that for any ε > 0 there is some δ > 0 such that if |x − π| < δ, then
|3 − 3| < ε. Now, given any ε > 0, |3 − 3| = 0 < ε, so any δ > 0 does the job !

Quiz #2. Friday, 28 September, 2001. [15 minutes]

Evaluate the following limits, if they exist.

1. lim
x→−1

x + 1

x2 − 1
[5] 2. lim

x→1

x + 1

x2 − 1
[5]

Solutions.

1. lim
x→−1

x + 1

x2 − 1
= lim

x→−1

x + 1

(x − 1)(x + 1)
= lim

x→−1

1

x − 1
=

1

−1 − 1
= −1

2
!

2. lim
x→1

x+1
x2−1 = lim

x→1

x+1
(x−1)(x+1) = lim

x→1

1
x−1 = ±∞ (The ± depends on whether x ap-

proaches 1 from the right or the left.) Hence lim
x→1

x+1
x2−1 does not exist. !

Quiz #3. Friday, 5 October, 2001. [20 minutes]

1. Is g(x) =





x2 − 6x + 9

x − 3
x #= 3

0 x = 3
continuous at x = 3? [5]

2. For which values of c does lim
x→∞

13

cx2 + 41
exist? [5]

1
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Solutions.

1. This boils down to checking whether lim
x→3

x2−6x+9
x−3 = 0 or not.

lim
x→3

x2 − 6x + 9

x − 3
= lim

x→3

(x − 3)2

x − 3
= lim

x→3
x − 3 = 3 − 3 = 0

It follows that f(x) is continuous at x = 3. !

2. First, if c = 0, lim
x→∞

13

cx2 + 41
= lim

x→∞
13

41
=

13

41
. Second, if c "= 0, then lim

x→∞
cx2 + 41 =

±∞, depending on whether c > 0 or c < 0, but then lim
x→∞

13

cx2 + 41
= 0.

Either way, lim
x→∞

13

cx2 + 41
exists no matter what the value of the constant c happens

to be. !
Quiz #4. Friday, 12 October, 2001. [10 minutes]

1. Use the definition of the derivative to find f ′(x) if f(x) =
5

7x
. [10]

Solutions.

1.

f ′(x) = lim
h→0

f(x + h) − f(x)

h
= lim

h→0

5
7(x+h) − 5

7x

h
= lim

h→0

5·7x−5·7(x+h)
7(x+h)·7x

h

= lim
h→0

35x − 35x − 35h

49xh(x + h)
= lim

h→0

−35h

49xh(x + h)
= lim

h→0

−5

7x(x + h)
= − 5

7x2
!

Quiz #5. Friday, 19 October, 2001. [17 minutes]

Compute
dy

dx
for each of the following:

1. y =
2x + 1

x2
[3] 2. y = ln (cos(x)) [3] 3. y = (x + 1)5e−5x [4]

Solutions.

1.
dy

dx
=

2 · x2 − (2x + 1) · 2x

x4
=

2x2 − 4x2 − 2x

x4
=

−2x(x + 1)

x4
=

−2(x + 1)

x3
!

2.
dy

dx
=

1

cos(x)
· d

dx
cos(x) =

1

cos(x)
· (− sin(x)) = − sin(x)

cos(x)
= − tan(x) !

3.

dy

dx
= 5(x + 1)4 · e−5x + (x + 1)5 · (−5)e−5x

= 5(x + 1)4e−5x − 5(x + 1)5e−5x

= 5(x + 1)4e−5x(1 − (x + 1))

= −5x(x + 1)4e−5x !

2
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Quiz #6. Friday, 2 November, 2001. [20 minutes]

Find
dy

dx
. . .

1. . . . at the point that y = 3 and x = 1 if y2 + xy + x = 13. [4]

2. . . . in terms of x if exy = x. [3]

3. . . . in terms of x if y = x3x. [3]

Solutions.

1. We’ll use implicit differentiation. Differentiating both sides of y2 + xy + x = 13 with
respect to x and solving for dy

dx gives:

2y
dy

dx
+ 1y + x

dy

dx
+ 1 = 0

⇐⇒(2y + x)
dy

dx
+ (y + 1) = 0

⇐⇒dy

dx
=

−(y + 1)

2y + x

When y = 3 and x = 1, we get:

dy

dx

∣∣∣∣
x=1 & y=3

= − 3 + 1

2 · 3 + 1
= −4

7
!

2. In the case of exy = x, it is easiest to solve for y first . . .

exy = x ⇐⇒ xy = ln(x) ⇐⇒ y =
ln(x)

x

. . . and then differentiate using the quotient rule:

dy

dx
=

1
x · x − ln(x) · 1

x2
=

1 − ln(x)

x2
!

3. y = x3x is a job for logarithmic differentiation. First,

y = x3x ⇐⇒ ln(y) = ln
(
x3x

)
= 3xln(x) ,

and differentiating both sides gives

d

dx
ln(y) =

d

dx
3xln(x) ⇐⇒

(
d

dy
ln(y)

) (
dy

dx

)
= 3 · lnx + 3x · 1

x

⇐⇒1

y
· dy

dx
= 3ln(x) + 3 .

3
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Solving for
dy

dx
and substituting back for y now gives:

dy

dx
= 3y(ln(x) + 1) = 3x3x(ln(x) + 1) !

Quiz #7. Friday, 9 November, 2001. [13 minutes]

1. Find all the maxima and minima of f(x) = x2e−x on (−∞,∞) and determine which
are absolute. [10]

Solutions.

1. First,

f ′(x) = 2x · e−x + x2 ·
(
−e−x

)
= 2xe−x − x2e−x = x(2 − x)e−x ,

which equals 0 exactly when x = 0 or x = 2. (Note that e−x > 0 for all x.) When x < 0,
x < 0 and 2 − x > 0, so f ′(x) < 0; when 0 < x < 2, 2 − x > 0 and x > 0, so f ′(x) > 0;
and when x > 2, 2 − x < 0 and x > 0, so f ′(x) < 0. Thus

x x < 0 x = 0 0 < x < 2 x = 2 2 < x
f ′(x) < 0 0 > 0 0 < 0
f(x) decreasing local min increasing local max decreasing

so f(0) = 0 is a local minimum and f(2) = 4/e2 is a local maximum.
It remains to check whether either local extreme point is an absolute extreme point of

the function. This can be done by taking the limit of f(x) as x → ∞ and as x → −∞, but
that is overkill for this problem. It is enough to note that f(x) = x2e−x ≥ 0 for all x, so
f(0) = 0 is an absolute minimum, but that f(−4) = (−4)2e−(−4) = 16e4 > 4/e2 = f(2),
so f(2) = 4/e2 is not an absolute maximum. !
Quiz #8. Friday, 23 November, 2001. [15 minutes]

1. A spherical balloon is being inflated at a rate of 1 m3/s. How is the diameter of the
balloon changing at the instant that the radius of the balloon is 2 m? [10]
[The volume of a sphere of radius r is V = 4

3πr3.]

Solution.

1. Since V = 4
3πr3,

1 =
dV

dt
=

dV

dr
· dr

dt
=

d

dt

(
4

3
πr3

)
· dr

dt
=

(
4

3
π · 3r2

)
· dr

dt
= 4πr2 · dr

dt
.

It follows that dr
dt = 1

4πr2 . At the instant in question, r = 2, so we have dr
dt = 1

4π22 = 1
16π .

Since the diameter, call it s, is twice the radius of the sphere, i.e. s = 2r, it follows
that at the instant that r = 2 m, the diameter is changing at a rate of ds

dt = d
dt(2r) =

2dr
dt = 2 · 1

16π = 1
8π m/s. !

4
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Quiz #9. Friday, 30 November, 2001. [20 minutes]

1. Use the Right-hand Rule to compute
3∫
0

(
2x2 + 1

)
dx. [6]

[You may need to know that
n∑

i=1

i2 =
n(n + 1)(2n + 1)

6
.]

2. Set up and evaluate the Riemann sum for
2∫
0

(3x +1)dx corresponding to the partition

x0 = 0, x1 = 2
3 , x2 = 4

3 , x3 = 2, with x∗
1 = 1

3 , x∗
2 = 1, and x∗

3 = 5
3 . [4]

Solutions.

1. The Right-hand Rule comes down to the formula:

∫ b

a

f(x)dx = lim
n→∞

n∑

i=1

f

(
a + i

b − a

n

)
· b − a

n

In this problem, f(x) = 2x2 + 1, a = 0, and b = 3:

∫ 3

0

(
2x2 + 1

)
dx = lim

n→∞

n∑

i=1

(
2

(
0 + i

3 − 0

n

)2

+ 1

)
· 3 − 0

n

= lim
n→∞

3

n

n∑

i=1

(
2
9i2

n2
+ 1

)

= lim
n→∞

3

n

[
n∑

i=1

(
18i2

n2

)
+

n∑

i=1

1

]

= lim
n→∞

3

n

[
18

n2

n∑

i=1

i2 + n

]

= lim
n→∞

3

n

[
18

n2
· n(n + 1)(2n + 1)

6
+ n

]

= lim
n→∞

3

n

[
3

n
(n + 1)(2n + 1) + n

]

= lim
n→∞

3

n

[
3

n

(
2n2 + 3n + 1

)
+ n

]

= lim
n→∞

3

n

[
6n + 9 +

3

n
+ n

]

= lim
n→∞

3

n

[
7n + 9 +

3

n

]

= lim
n→∞

[
21 +

27

n
+

9

n2

]

= 21 + 0 + 0 = 21

5
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One could skip the odd step here or there . . . !

2. The Riemann sum for
2∫
0

(3x+1)dx for the given partition and choice of points is (and

evaluates to):

3∑

i=1

f (x∗
i ) · (xi − xi−1) =

3∑

i=1

(3x∗
i + 1) · (xi − xi−1)

=

(
3 · 1

3
+ 1

) (
2

3
− 0

)
+ (3 · 1 + 1)

(
4

3
− 2

3

)
+

(
3 · 5

3
+ 1

) (
2 − 4

3

)

=2 · 2

3
+ 4 · 2

3
+ 6 · 2

3
=

4

3
+

8

3
+

12

3
=

4 + 8 + 12

3
=

24

3
= 8 !

Quiz #10. Friday, 7 December, 2001. [20 minutes]

Given that
4∫
1

xdx = 7.5 and
4∫
1

x2 dx = 21, use the properties of definite integrals to:

1. Evaluate
4∫
1

(x + 1)2 dx. [5]

2. Find upper and lower bounds for
4∫
1

x3/2 dx. [5]

Solutions.

1. Using the given data and some properties of definite integrals:

∫ 4

1

(x + 1)2 dx =

∫ 4

1

(
x2 + 2x + 1

)
dx

=

∫ 4

1

x2 dx +

∫ 4

1

2xdx +

∫ 4

1

1 dx

= 21 + 2

∫ 4

1

xdx + 1 · (4 − 1)

= 21 + 2 · 7.5 + 3

= 21 + 15 + 3 = 39 !

2. First, note that x ≤ x3/2 ≤ x2 when x ≥ 1. Using the given data and the order
properties of definite integrals gives:

7.5 =

∫ 4

1

xdx ≤
∫ 4

1

x3/2 dx ≤
∫ 4

1

x2 dx = 21

Thus 7.5 is a lower bound and 21 is an upper bound for
4∫
1

x3/2 dx. !

6
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Quiz #11. Friday, 11 January, 2002. [15 minutes]

1. Compute the indefinite integral
∫ (

x2 + x + 1
)3

(4x + 2)dx. [5]

2. Find the area under the graph of f(x) = sin(x) cos(x) for 0 ≤ x ≤ π
2
. [5]

Solutions.

1. We will use the substitution u = x2 + x + 1 to compute the integral; note that
du = (2x + 1)dx.

∫ (
x2 + x + 1

)3
(4x + 2)dx =

∫ (
x2 + x + 1

)3
2(2x + 1)dx

=

∫
u32du = 2

u4

4
+ c =

1

2
u4 + c =

1

2

(
x2 + x + 1

)4
+ c !

2. First, note that both sin(x) and cos(x), and hence also sin(x) cos(x), are non-negative
for 0 ≤ x ≤ π

2 . Hence the area under the graph of f(x) = sin(x) cos(x) for 0 ≤ x ≤ π
2

is given by the definite integral
π/2∫
0

sin(x) cos(x)dx. We will compute this integral

using the substitution u = sin(x), so du = cos(x)dx. Note also that u = 0 when x = 0
and u = 1 when x = π

2 .

∫ π/2

0

sin(x) cos(x)dx =

∫ 1

0

u du =
u2

2

∣∣∣∣
1

0

=
12

2
− 02

2
=

1

2
!

Quiz #12. Friday, 18 January, 2002. [15 minutes]

1. Compute
e∫
1

ln(x2)
x dx. [5]

2. Find the area of the region between the curves y = x3 − x and y = x − x3. [5]

Solutions.

1. We’ll compute the integral using the substitution u = ln(x), so du = 1
xdx. Note that

ln
(
x2

)
= 2ln(x), and that u = 0 when x = 1 and u = 1 when x = e.

∫ e

1

ln
(
x2

)

x
dx =

∫ e

1

2ln(x)

x
dx =

∫ 1

0

2u du = 2
u2

2

∣∣∣∣
1

0

= u2
∣∣1
0

= 12 − 02 = 1 !

2. First, we need to find the points where these curves intersect:

x3 − x = x − x3 ⇔ 2x3 = 2x ⇔ x3 = x

x = 0 is one solution to x3 = x; when x $= 0, we can divide the equation by x to get x2 = 1,
so x = −1 and x = 1 are the other solutions to x3 = x. From −1 to 0, x3 − x ≥ x − x3,
and from 0 to 1, x − x3 ≥ x3 − x. (This can be done with some algebra and knowledge of

7
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inequalities, or you can just test each expression at some points in between, e.g. x = − 1
2

and x = 1
2 .)

The area between the two curves is then given by:

∫ 0

−1

[(
x3 − x

)
−

(
x − x3

)]
dx +

∫ 1

0

[(
x − x3

)
−

(
x3 − x

)]
dx

=

∫ 0

−1

[
2x3 − 2x

]
dx +

∫ 1

0

[
2x − 2x3

]
dx

=

[
2
x4

4
− 2

x2

2

]∣∣∣∣
0

−1

+

[
2
x2

2
− 2

x4

4

]∣∣∣∣
1

0

=

[
x4

2
− x2

]∣∣∣∣
0

−1

+

[
x2 − x4

2

]∣∣∣∣
1

0

=

[(
04

2
− 02

)
−

(
(−1)4

2
− (−1)2

)]
+

[(
12 − 14

2

)
−

(
02 − 04

2

)]

=

[
0 −

(
−1

2

)]
+

[
1

2
− 0

]

=
1

2
+

1

2
= 1 !

Quiz #13. Friday, 25 January, 2002. [19 minutes]

1. Find the volume of the solid obtained by revolving the region in the first quadrant
bounded by y = 1

x , y = x, and x = 2 about the x-axis. [10]

Solution.

1. First, we find where the curves intersect. y = 1
x and y = x intersect when 1

x = x, i.e.
when x2 = 1. Since we are looking for a region in the first quadrant, we discard the
root x = −1 and keep x = 1; plugging into either equation for y gives us the point
(1, 1). y = 1

x and x = 2 intersect at the point
(
2, 1

2

)
, and y = x and x = 2 intersect at

(2, 2). It is not too hard — if one is careful! — to deduce that the region is bounded
above by y = x and below by y = 1

x for 1 ≤ x ≤ 2. Rotating this region about the
x-axis gives the solid sketched below.

8
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We will find the volume of this solid using the washer method. (A typical washer
for this solid is also drawn in the sketch.) Since we rotated about a horizontal line, the
washers will be stacked along this line (the x-axis) and so we will need to integrate with
respect to x. Note that the outer radius of the washer at x is R = x and the inner radius
is r = 1

x , so the volume is given by:

∫ 2

1

(
πR2 − πr2

)
dx = π

∫ 2

1

(
x2 − 1

x2

)
dx

= π

(
x3

3
− −1

x

)∣∣∣∣
2

1

= π

(
x3

3
+

1

x

)∣∣∣∣
2

1

= π

[(
8

3
+

1

2

)
−

(
1

3
+ 1

)]

=
11

6
π !

Quiz #14. Friday, 1 February, 2002. [17 minutes]

1. Suppose the region bounded above by y = 1 and below by y = x2 is revolved about
the line x = 2. Sketch the resulting solid and find its volume. [10]

Solution.

1. y = 1 intersects y = x2 when x2 = 1, i.e. when x = ±1. The region between y = 1
and y = x2, −1 ≤ x ≤ 1, when revolved about x = 2, gives the solid sketched below.

We will find the volume of this solid using the shell method. (A typical cylindrical
shell for this solid is also drawn in the sketch.) Since we rotated about a vertical line, the
shell will be nested around this line (x = 2) and so we will need to integrate with respect
to x in order to integrate in a direction perpendicular to the shells. Note that the radius

9
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of the shell at x is r = 2 − x and the height is h = 1 − x2, so the volume is given by:

∫ 1

−1

2πrh dx =

∫ 1

−1

2π(2 − x)
(
1 − x2

)
dx

= π

∫ 1

−1

(
4 − 2x − 4x2 + 2x3

)
dx

= π

(
4x − x2 − 4

3
x3 +

1

2
x4

)∣∣∣∣
1

−1

= π

[(
4 − 1 − 4

3
+

1

2

)
−

(
−4 − 1 +

4

3
+

1

2

)]

=
16

3
π !

Quiz #15. Friday, 15 February, 2002. [25 minutes]

Evaluate each of the following integrals.

1.

∫ π/4

0

tan2(x)dx [4] 2.

∫ √
x2 + 4x + 5 dx [6]

Solution.

1.

∫ π/4

0

tan2(x)dx =

∫ π/4

0

(
sec2(x) − 1

)
dx

= (tan(x) − x)|π/4
0 =

(
1 − π

4

)
− (0 − 0) = 1 − π

4
!

2.

∫ √
x2 + 4x + 5 dx =

∫ √
(x + 2)2 + 1 dx

Let w = x + 2, so dw = dx.

=

∫ √
w2 + 1 dw

Let w = tan(t), so dw = sec2(t)dt.

=

∫ √
tan2(t) + 1 sec2(t)dt =

∫ √
sec2(t) sec2(t)dt

=

∫
sec3(t)dt

10
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We will use integration by parts to compute this trig integral. Let u = sec(t) and
dv = sec2(t)dt, so du = sec(t) tan(t)dt and v = tan(t). Then

∫
sec3(t)dt = sec(t) tan(t) −

∫
sec(t) tan2(t)dt

= sec(t) tan(t) −
∫

sec(t)
(
sec2(t) − 1

)
dt

= sec(t) tan(t) −
∫ (

sec3(t) − sec(t)
)

dt

= sec(t) tan(t) −
∫

sec3(t)dt +

∫
sec(t)dt

It follows that

2

∫
sec3(t)dt = sec(t) tan(t) +

∫
sec(t)dt ,

so
∫

sec3(t)dt =
1

2

[
sec(t) tan(t) +

∫
sec(t)dt

]

=
1

2
sec(t) tan(t) +

1

2
ln (sec(t) + tan(t)) + C .

(It really helps to have memorized that
∫

sec(t)dt = ln (sec(t) + tan(t)) + C . . . )
It remains for us to substitute back to put the answer in terms of x:

∫ √
x2 + 4x + 5 dx =

∫
sec3(t)dt

=
1

2
sec(t) tan(t) +

1

2
ln (sec(t) + tan(t)) + C

=
1

2
w

√
1 + w2 +

1

2
ln

(
w +

√
1 + w2

)
+ C

. . . since when tan(t) = w, sec(t) =
√

1 + w2.

=
1

2
(x + 2)

√
1 + (x + 2)2 +

1

2
ln

(
(x + 2) +

√
1 + (x + 2)2

)
+ C !

Quiz #16. Friday, 1 March, 2002. [25 minutes]

1. Evaluate the following integral:

∫
x2 − 2x − 6

(x2 + 2x + 5) (x − 1)
dx

Solution. This is a job for partial fractions. First, note that the quadratic factor in the
denominator is irreducible since x2 + 2x + 5 = x2 + 2x + 1 + 4 = (x + 1)2 + 4 > 0 for all
x. Thus

x2 − 2x − 6

(x2 + 2x + 5) (x − 1)
=

Ax + B

x2 + 2x + 5
+

C

x − 1

11
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for some constants A, B, and C . Putting the right-hand side of the equation above over a
common denominator of x(x − 1)2 would give a numerator equal to the numerator of the
left-hand side:

x2 − 2x − 6 = (Ax + B)(x − 1) + C(x2 + 2x + 5)

= Ax2 − Ax + Bx − B + Cx2 + 2Cx + 5C

= (A + C)x2 + (−A + B + 2C)x + (−B + 5C)

Thus A+C = 1, −A+B+2C = −2, and −B+5C = −6, which equations we need to solve
for A, B, and C . From the first and third of these equations we get that A = 1 − C and
B = 6+5C . Plugging these into the second equation gives −2 = −(1−C)+(6+5C)+2C =
5 − 8C , so C = −7/8. It follows that A = 15/8 and B = 13/8. Hence:

∫
x2 − 2x − 6

(x2 + 2x + 5) (x − 1)
dx =

∫ [ 15
8 x + 13

8

x2 + 2x + 5
+

− 7
8

x − 1

]
dx

=
1

8

∫
15x + 13

x2 + 2x + 5
dx − 7

8

∫
1

x − 1
dx

If u = x2 + 2x + 5, then du = (2x + 2)dx = 2(x + 1)dx, so we want to split 15x + 13 into
a multiple of x + 1 plus a constant.

=
1

8

∫
15(x + 1) − 2

x2 + 2x + 5
dx − 7

8
ln(x − 1)

=
1

8

∫
15(x + 1)

x2 + 2x + 5
dx − 1

8

∫ −2

x2 + 2x + 5
dx − 7

8
ln(x − 1)

Use the substitution u = x2 + 2x + 5 in the first part, and complete the square in the
second part.

=
15

8

∫
1

u

1

2
du +

2

8

∫
1

(x + 1)2 + 4
dx − 7

8
ln(x − 1)

Use the substitution w = x + 1, so dw = dx, in the second part.

=
15

16
ln(u) +

1

4

∫
1

w2 + 4
dw − 7

8
ln(x − 1)

Substitute back in the first part, and substitute w = 2s, so dw = 2ds in the second.

=
15

16
ln

(
x2 + 2x + 5

)
+

1

4

∫
1

4s2 + 4
2ds − 7

8
ln(x − 1)

=
15

16
ln

(
x2 + 2x + 5

)
+

1

4
· 2

4

∫
1

s2 + 1
ds − 7

8
ln(x − 1)

=
15

16
ln

(
x2 + 2x + 5

)
+

1

8
arctan(s) − 7

8
ln(x − 1) + K

12
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. . . where K is a constant.

=
15

16
ln

(
x2 + 2x + 5

)
+

1

8
arctan

(w

2

)
− 7

8
ln(x − 1) + K

=
15

16
ln

(
x2 + 2x + 5

)
+

1

8
arctan

(
x − 1

2

)
− 7

8
ln(x − 1) + K

Whew! !

Quiz #17. Friday, 8 March, 2002. [25 minutes]

1. Evaluate the following integral:

∫ ∞

2

1

x(x − 1)2
dx

Solution. Note that x(x − 1)2 "= 0 for all x with 2 ≤ x < ∞, so we don’t have to worry
about the integral being improper except by way of the upper limit of ∞. By definition,

∫ ∞

2

1

x(x − 1)2
dx = lim

t→∞

∫ t

2

1

x(x − 1)2
dx

which leaves us with the task of integrating
∫ t

2
1

x(x−1)2 dx and then evaluating the limit as
t → ∞.

Computing the integral requires us to decompose 1
x(x−1)2

using partial fractions. Note

that the numerator has degree less than the degree of the denominator, but that we do
have a repeated factor in the denominator. Thus

1

x(x − 1)2
=

A

x
+

B

x − 1
+

C

(x − 1)2

for some constants A, B, and C . Putting the right-hand side of the equation above over a
common denominator of x(x − 1)2 would give a numerator equal to the numerator of the
left-hand side:

1 =A(x − 1)2 + Bx(x − 1) + Cx

=A
(
x2 − 2x + 1

)
+ B

(
x2 − x

)
+ Cx

=(A + B)x2 + (−2A − B + C)x + A.

Thus A + B = 0, −2A − B + C = 0, and A = 1, from which it quickly follows that A = 1,

13
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B = −1, and C = 1. Hence

∫ ∞

2

1

x(x − 1)2
dx = lim

t→∞

∫ t

2

1

x(x − 1)2
dx

= lim
t→∞

∫ t

2

[
1

x
+

−1

x − 1
+

1

(x − 1)2

]
dx

= lim
t→∞

[∫ t

2

1

x
dx −

∫ t

2

1

x − 1
dx +

∫ t

2

1

(x − 1)2
dx

]

= lim
t→∞

[
ln(x)|t2 − ln(x − 1)|t2 +

−1

(x − 1)

∣∣∣∣
t

2

]

= lim
t→∞

[
(ln(t) − ln(2)) − (ln(t − 1) − ln(2 − 1)) +

( −1

(t − 1)
− −1

(2 − 1)

)]

= lim
t→∞

[
ln(t) − ln(t − 1) − 1

(t − 1)
− ln(2) + ln(1) +

1

1

]

= lim
t→∞

[
ln

(
t

t − 1

)
− 1

(t − 1)
− ln(2) + 0 + 1

]

= 1 − ln(2)

since lim
t→∞

t
t−1 = lim

t→∞
1

1−1/t = 1
1−0 = 1, so lim

t→∞
ln

(
t

t−1

)
= ln(1) = 0, while lim

t→∞
1

(t−1) = 0.

!

Quiz #18. Friday, 15 March, 2002. [18 minutes]

Determine whether each of the following series converges or diverges.

1.
∞∑

n=0

[
1

n + 1
+

3n

3n + 1

]
[4] 2.

∞∑

n=0

253

3n + 1
[6]

Solutions.

1. We will apply the Divergence Test.

lim
n→∞

[
1

n + 1
+

3n

3n + 1

]
=

[
lim

n→∞
1

n + 1

]
+

[
lim

n→∞
3n

3n + 1

]
= 0 + lim

n→∞
3n

3n + 1
· 1/3n

1/3n

= lim
n→∞

1

1 + 1/3n
=

1

1 + 0
= 1 "= 0

It follows that the given series diverges. !
2. We will apply the Comparison Test. Note that

0 <
253

3n + 1
<

253

3n

14
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for all n ≥ 0, because reducing the denominator increases the fraction. The series
∞∑

n=0

253
3n

is a geometric series with a = 253 and r = 1
3 , and since

∣∣1
3

∣∣ < 1, it converges. It follows by
the Comparison Test that the given series converges as well. !
Bonus Quiz. Monday, 18 March, 2002. [15 minutes]

Compute any two of 1–3.

1. lim
t→∞

te−t [5] 2.

∫ ∞

0

te−t dt [5] 3.

∞∑

n=0

1

n2 + 3n + 2
[5]

Solutions.

1. lim
t→∞

te−t = lim
t→∞

t

et
= lim

t→∞

d
dt t
d
dte

t
= lim

t→∞
1

et
= 0, using l’Hôpital’s Rule and the fact

that lim
t→∞

et = ∞. !
2. We’ll need l’Hôpital’s Rule and the fact that lim

s→∞
es = ∞ again:

∫ ∞

0

te−t dt = lim
s→∞

s∫

0

te−t dt

Use integration by parts with u = t and dv = e−tdt,

so du = dt and v = −e−t.

= lim
s→∞

[
−te−t

∣∣s
0
−

∫ s

0

(
−e−t

)
dt

]

= lim
s→∞

[(
−se−s

)
−

(
−0e−0

)
− e−t

∣∣s
0

]

= lim
s→∞

[
−se−s −

(
e−s − e−0

)]

= lim
s→∞

[
−se−s − e−s + 1

]

= lim
s→∞

[
− s

es
− 1

es

]
+ 1

= lim
s→∞

[
−

d
ds

s
d
ds

es
− 0 + 1

]

= lim
s→∞

[
− 1

es

]
+ 1

= −0 + 1

= 1 !

3. Note that n2 + 3n + 2 = (n + 1)(n + 2) and that, using the usual partion fraction

nonsense,
1

n2 + 3n + 2
=

1

n + 1
− 1

n + 2
. Thus the kth partial sum of the given series
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is

Sk =

k∑

n=0

1

n2 + 3n + 2
=

k∑

n=0

(
1

n + 1
− 1

n + 2

)

=

(
1

0 + 1
− 1

0 + 2

)
+

(
1

1 + 1
− 1

1 + 2

)
+ · · · +

(
1

k + 1
− 1

k + 2

)

=

(
1

1
− 1

2

)
+

(
1

2
− 1

3

)
+

(
1

3
− 1

4

)
+ · · · +

(
1

k + 1
− 1

k + 2

)

= 1 − 1

k + 2
,

so
∞∑

n=0

1

n2 + 3n + 2
= lim

k→∞
Sk = lim

k→∞

(
1 − 1

k + 2

)
= 1 − 0 = 1 . !

Quiz #19. Friday, 22 March, 2002. [20 minutes]

Determine whether each of the following series converges or diverges.

1.

∞∑

n=1

1

nn
[5] 2.

∞∑

n=0

4n + 12

n2 + 6n + 13
[5]

Solutions.

1. We will use the Comparison Test. Note that for all n > 2, nn > 2n, so

0 <
1

nn
<

1

2n
.

∞∑

n=1

1

2n
is the geometric series with a =

1

2
and r =

1

2
, and it converges because

|r| =
1

2
< 1. It follows by the Comparison Test that

∞∑

n=1

1

nn
converges as well.

One could also conveniently use the Limit Comparison Test. !

2. We will use the Limit Comparison Test, comparing the given series to
∞∑

n=0

1

n
. (Why

compare the given series to this one? Note that the terms of the given series are
rational functions of n in which the top power in the numerator is one less than the

top power in the denominator.
1

n
is the simplest rational function with this pattern.)
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Now:

lim
n→∞

1
n

4n+12
n2+6n+13

= lim
n→∞

1

n
· n2 + 6n + 13

4n + 12

= lim
n→∞

n2 + 6n + 13

4n2 + 12n

= lim
n→∞

n2 + 6n + 13

4n2 + 12n
· 1/n2

1/n2

= lim
n→∞

1 + 6
n + 13

n2

4 + 12
n

=
1 + 0 + 0

4 + 0
=

1

4

Since 0 < 1
4 < ∞, it follows by the Limit Comparison Test that the series

∞∑

n=0

1

n
and

∞∑

n=0

4n + 12

n2 + 6n + 13
both converge or both diverge. Since

∞∑

n=0

1

n
is known to diverge, it

myst be the case that
∞∑

n=0

4n + 12

n2 + 6n + 13
diverges as well.

This problem could also be done using the Comparison Test or (very conveniently)
the Integral Test. !
Quiz #20. Tuesday, 2 April, 2002. [10 minutes]

1. Determine whether the series
∞∑

n=0

(−1)n + cos(nπ)

n + 1
converges absolutely, converges

conditionally, or diverges. [10]

Solution. The key here is that cos(nπ) = (−1)n since cos is equal to 1 at even multiples
of π and −1 at odd multiples of π. Hence

∞∑

n=0

(−1)n + cos(nπ)

n + 1
=

∞∑

n=0

(−1)n + (−1)n

n + 1
=

∞∑

n=0

2 · (−1)n

n + 1
= 2

∞∑

n=0

(−1)n

n + 1
,

so the given series will converge (or not) exactly as
∞∑

n=0

(−1)n

n + 1
does. However, this is a

series beaten to death in class and the text in very slight disguise:

∞∑

n=0

(−1)n

n + 1
=

1

1
− 1

2
+

1

3
− 1

4
+ · · · =

∞∑

k=1

(−1)k−1

k
= (−1)

∞∑

k=1

(−1)k

k

(Note that the indices are related via k = n + 1.)
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We know already that
∞∑

k=1

(−1)k

k
converges – we showed that in class using the Al-

ternating Series Test. It does not converge absolutely because
∞∑

k=1

1

k
does not converge

– we showed that, in effect using the Integral Test, on Assignment #6. Thus the series
∞∑

k=1

(−1)k

k
, and hence given series too, converges conditionally. !

Quiz #21. Friday, 5 April, 2002. [10 minutes]

1. Find a power series which, when it converges, equals f(x) =
3x2

(1 − x3)
2 . [10]

Solution. Note that the derivative of part of the denominator f(x),
d

dx

(
1 − x3

)
= −3x2,

is a constant multiple to the numerator, 3x2. This makes it easy to integrate f(x) using
the substitution u = 1 − x3 (so du = −3x2dx and (−1)du = 3x2dx):

∫
f(x)dx =

∫
3x2

(1 − x3)
2 dx =

∫
1

u2
(−1)du = −

∫
u−2 du

= −
(
−u−1

)
+ C =

1

u
+ C =

1

1 − x3
+ C

The point here is that it is easy to find a power series representation of the antiderivative

of f(x) because
1

1 − x3
is the sum of the geometric series with a = 1 and r = x3. Thus:

∫
f(x)dx =

1

1 − x3
+ C =

∞∑

n=0

(
x3

)n
=

∞∑

n=0

x3n

The power series of f(x) is the derivative of the power series for
∫

f(x)dx (at least for
those x for which this series converges absolutely):

f(x) =
3x2

(1 − x3)
2 =

d

dx

( ∞∑

n=0

x3n

)
=

∞∑

n=0

d

dx
x3n =

∞∑

n=0

3nx3n−1

Note that the first term, for n = 0, has a coefficient of 3 · 0 = 0, so it doesn’t matter that
the corresponding power of x is negative. !
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Mathematics 110 – Calculus of one variable
Trent University, 2001-2002

Solutions to Test #1

1. Do any two of a-c. [10 = 2 × 5 ea.]

a. Use the ε − δ definition of limits to verify that lim
x→2

(5 − x) = 3.

Solution. By definition, lim
x→2

(5 − x) = 3 means:

For any ε > 0, there is some δ > 0, such that
if |x − 2| < δ, then |(5 − x) − 3| < ε.

However,

|(5 − x) − 3| < ε ⇐⇒ −ε < (5 − x) − 3 < ε

⇐⇒ −ε < 2 − x < ε

⇐⇒ ε > x − 2 > −ε

⇐⇒ −ε < x − 2 < ε ,

so, δ = ε will do the job. Hence lim
x→2

(5 − x) = 3. !

b. Use the definition of the derivative to verify that f ′(2) = 5 if f(x) = 2x2 − 3x + 4.

Solution. By definition, f ′(2) = lim
h→0

f(2 + h) − f(2)

h
. Now

f ′(2) = lim
h→0

f(2 + h) − f(2)

h

= lim
h→0

[
2(2 + h)2 − 3(2 + h) + 4

]
−

[
2 · 22 − 3 · 2 + 4

]

h

= lim
h→0

[
8 + 8h + 2h2 − 6 − 3h + 4

]
− [8 − 6 + 4]

h

= lim
h→0

5h + 2h2

h

= lim
h→0

(5 + 2h)

= 5 + 2 · 0

= 5 ,

so f ′(2) = 5. !

c. Determine whether f(x) =

{ x − 1

x2 − 1
x %= 1

41 x = 1
is continuous at a = 1 or not.

1

85



Solution. f(x) is continuous at a if lim
x→a

f(x) = f(a), so we need to check whether or not

lim
x→1

x − 1

x2 − 1
= 41. Since

lim
x→1

x − 1

x2 − 1
= lim

x→1

x − 1

(x − 1)(x + 1)
= lim

x→1

1

x + 1
=

1

1 + 1
=

1

2
"= 41 ,

f(x) is not continuous at a = 1. !

2. Find
dy

dx
in any three of a-d. [12 = 3 × 4 ea.]

a. y = 4x b. y = e−x cos(x) c. y = sin(cos(−x)) d. ln(xy) = 0

Solution to a. This is easiest using logarithmic differentiation:

y = 4x ⇐⇒ ln(y) = ln (4x) = xln(4)

Differentiating ln(y) = xln(4) with respect to x gives

1

y
· dy

dx
=

d

dx
ln(y) =

d

dx
xln(4) = ln(4) .

Thus
dy

dx
= yln(4) = 4xln(4) . !

Solution to b. The main tool needed here is the product rule:

dy

dx
=

d

dx
e−x cos(x)

=

(
d

dx
e−x

)
cos(x) + e−x

(
d

dx
cos(x)

)

=

(
e−x d

dx
(−x)

)
cos(x) + e−x(− sin(x))

= −e−x cos(x) − e−x sin(x)

= −e−x(cos(x) + sin(x)) !

Solution to c. This one is chain rule all the way. In rather more detail than is strictly
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desirable:

dy

dx
=

d

dx
sin(cos(−x))

=
d

du
sin(u) · du

dx
where u = cos(−x)

= cos(u)
du

dx
where u = cos(−x)

= cos(cos(−x))
d

dx
cos(−x)

= cos(cos(−x))
d

dv
cos(v) · dv

dx
where v = −x

= cos(cos(−x))(− sin(v)) · dv

dx

= − cos(cos(−x)) sin(−x)
d

dx
(−x)

= − cos(cos(−x)) sin(−x)(−1)

= cos(cos(−x)) sin(−x)

= − cos(cos(x)) sin(x) since cos(−x) = cos(x) and sin(−x) = − sin(x) !

Solution to d. This one looks like it ought to be done by implicit differentiation, and it
can be done that way, but it is easier to just solve for y in terms of x first:

ln(xy) = 0 ⇐⇒ xy = eln(xy) = e0 = 1 ⇐⇒ y =
1

x

Note that we can’t have either y or x equal to 0 in the original equation because ln(0) is

not defined. Now, using the power rule,
dy

dx
=

d

dx

(
1

x

)
= − 1

x2
.

If one were to do this by implicit differentiation, one would get
dy

dx
= −y

x
and then

still have to solve for y in terms of x to have the best possible solution . . . !

3. Do any two of a-c. [8 = 2 × 4 ea.]

a. Find the equation of the tangent line to y = arctan(x) at the point
(
1, π

4

)
.

Solution. Since
d

dx
arctan(x) =

1

1 + x2
, it follows that the slope of the tangent line to

y = arctan(x) at the point
(
1, π

4

)
is given by

d

dx
arctan(x)

∣∣∣∣
x=1

=
1

1 + x2

∣∣∣∣
x=1

=
1

1 + 12
=

1

2
.

It follows that the tangent line has an equation of the form y =
1

2
x + b, and since the

tangent line passes through the point
(
1, π

4

)
, we can solve for b by plugging in x = 1 and
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y =
π

4
:

π

4
=

1

2
· 1 + b ⇐⇒ b =

π

4
− 1

2
,

Thus the equation of the tangent line y = arctan(x) at the point
(
1, π

4

)
is y =

1

2
x+

π

4
− 1

2
.

!
b. How many functions h(x) are there such that h′(x) = h(x)?

Solution. Infinitely many, a h(x) = cex is such a function for any constant c. !
c. Draw the graph of a function f(x) which is continuous on the domain (0,∞) such

that lim
x→0

f(x) = ∞ and with a local maximum at x = 5 as its only critical point, or

explain why there cannot be such a function.

Solution. There can be no such function. Suppose there were. Such an f(x) must have
a local maximum at x = 5, it would also have values which are less than f(5) for some
points to the left of x = 5. Since f(x) must also have a vertical asymptote heading to
infinity at x = 0, which is to the left of x = 5, and supposed to be continuous between
x = 0 and x = 5, it must have a local minimum somewhere in between. However, such a
local minimum would be a another critical point, but f(x) is only supposed to have the
one at x = 5 . . . !

4. Find the intercepts, maxima and minima, inflection points, and vertical and horizontal

asymptotes of f(x) =
x

x2 + 1
and sketch the graph of f(x) based on this information.

[10]

Solution.
i. (Domain) Since x and x2 + 1 are defined and continuous for all x, and x2 + 1 > 0 for all x,

f(x) =
x

x2 + 1
is defined and continuous for all x.

ii. (Intercepts) Since f(x) =
x

x2 + 1
= 0 ⇐⇒ x = 0, (0, 0) is the only x-intercept and the only

y-intercept of f(x).

iii. (Local maxima and minima)

f ′(x) =
d

dx

(
x

x2 + 1

)

=
1 ·

(
x2 + 1

)
− x · (2x)

(x2 + 1)2

=
1 − x2

(x2 + 1)2

which is defined everywhere since x2 + 1 > 0 for all x.
Thus f ′(x) = 0 ⇐⇒ 1−x2 = 0 ⇐⇒ x = ±1. We determine which of these give local maxima

or minima by considering the intervals of increase and decrease:

x x < −1 x = −1 −1 < x < 1 x = 1 1 < x
f ′(x) < 0 0 > 0 0 < 0
f(x) decreasing local min increasing local max decreasing

4
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Thus f(−1) = 1
2

and f(1) = 1
2

are, respectively, local minimum and local maximum points of f(x).

iv. (Points of inflection and curvature)

f ′′(x) =
d

dx
f ′(x)

=
d

dx

1 − x2

(x2 + 1)2

=
(−2x)

(
x2 + 1

)2 −
(
1 − x2

)
· 2

(
x2 + 1

)
· 2x

(x2 + 1)4

=
(−2x)

(
x2 + 1

)
−

(
1 − x2

)
· 2 · 2x

(x2 + 1)3

=
2x3 − 6x

(x2 + 1)3

=
2x

(
x2 − 3

)

(x2 + 1)3

which is defined everywhere since x2 + 1 > 0 for all x.
Thus f ′′(x) = 0 if x = 0 or x = ±

√
3. To sort out the inflection points and intervals of curvature,

we check where f ′′(x) is positive and where it is negative.

x x < −
√

3 x = −
√

3 −
√

3 < x < 0 x = 0 0 < x <
√

3 x =
√

3 x >
√

3
f ′′(x) < 0 0 > 0 0 < 0 0 > 0
f(x) conc. down infl. pt. conc. up infl. pt. conc. down infl. pt. conc. up

Thus f
(
−

√
3
)

= −
√

3

4
, f(0) = 0, and f

(√
3
)

=

√
3

4
are the inflection points of f(x).

v. (Vertical asymptotes) f(x) has no vertical asymptotes because it is defined and continuous for all x.

vi. (Horizontal asymptotes) Since x → ±∞ and x2 +1 → infty as x → ±∞, we can use l’Hôpital’s Rule
in the relevant limits. (Not that we really need to, but what the heck!)

lim
x→+∞

x

x2 + 1
= lim

x→+∞
1

2x
= 0

lim
x→−∞

x

x2 + 1
= lim

x→−∞
1

2x
= 0

Thus f(x) has a horizontal asymptote at y = 0 in both directions.

vii. (The graph!)

Whew! !

5
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Mathematics 110 – Calculus of one variable
Trent University, 2001-2002

Test #2
Friday, 8 February, 2002

Time: 50 minutes

1. Compute any three of the integrals a-e. [12 = 3 × 4 ea.]

a.

∫ π/2

−π/2

cos3(x)dx b.

∫
x2ln(x)dx c.

∫ 1

0

(ex)
2

dx

d.

∫
e2xln

(
e2x + 1

)

e2x + 1
dx e.

∫ e

1

(ln(x))
2

dx

Solutions.

a.∫ π/2

−π/2

cos3(x)dx =

∫ π/2

−π/2

cos2(x) cos(x)dx =

∫ π/2

−π/2

(
1 − sin2(x)

)
cos(x)dx

We’ll substitute u = sin(x), so du = cos(x)dx, −1 = sin(−π/2),

and 1 = sin(π/2).

=

∫ 1

−1

(
1 − u2

)
du =

(
u − u3

3

)∣∣∣∣
1

−1

=

(
1 − 1

3

)
−

(
−1 +

1

3

)
=

4

3
!

b. We’ll use integration by parts, with u = ln(x) and dv = x2 dx, so du = 1
x

dx and v = x3

3
.

∫
x2ln(x)dx =

x3

3
ln(x) −

∫
x3

3
· 1

x
dx =

x3

3
ln(x) −

∫
x2

3
dx =

x3

3
ln(x) − x3

9
+ C !

c. After bit of algebra, we’ll use the substitution u = 2x, so du = 2 dx (and 1
2 du = dx),

0 = 2 · 0, and 2 = 2 · 1.
∫ 1

0

(ex)
2

dx =

∫ 1

0

e2x dx =

∫ 2

0

eu · 1

2
du =

1

2
eu

∣∣∣∣
2

0

=
1

2

(
e2 − 1

)
!

d. We’ll substitute whole hog: let w = ln
(
e2x + 1

)
, so dw = 2e2x

e2x+1 dx (and 1
2 dw = e2x

e2x+1 ).
∫

e2xln
(
e2x + 1

)

e2x + 1
dx =

∫
w · 1

2
dw =

w2

4
+ C =

1

4

(
ln

(
e2x + 1

))2
+ C !

e. We’ll use integration by parts, with u = (ln(x))
2

and dv = dx, so du = 2ln(x) · 1
x dx

and v = x.∫ e

1

(ln(x))
2

dx = x (ln(x))
2
∣∣∣
e

1
−

∫ e

1

x · 2ln(x) · 1

x
dx =

(
e · 12 − 1 · 02

)
− 2

∫ e

1

ln(x)dx

We use integration by parts again, with u = ln(x) and dv = dx,

so du =
1

x
dx and v = x.

= e − 2

(
xln(x)|e1 −

∫ e

1

x · 1

x
dx

)
= e − 2

(
(e · 1 − 1 · 0) −

∫ e

1

1 dx

)

= e − 2 (e − x|e1) = e − 2 (e − (e − 1)) = e − 2 !

1
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2. Do any two of a-c. [8 = 2 × 4 ea.]

a. Compute
1∫
0

(2x + 3)dx using the Right-hand Rule.

b. Compute
dy

dx
if y =

x2∫
0

√
t dt (where x ≥ 0) without evaluating the integral.

c. Compute
1∫

−1

√
1 − x2 dx by interpreting it as an area.

Solutions.

a. If we partition [0, 1] into n equal subintervals, then the ith subinterval is
[

i−1
n , i

n

]
, which

has width 1
n and right endpoint i

n . Thus the area of the ith rectangle in the Right-hand

Rule Riemann sum is
(
2 i

n + 3
)

1
n . Hence

∫ 1

0

(2x + 3)dx = lim
n→∞

n∑

i=1

(
2

i

n
+ 3

)
1

n
= lim

n→∞
1

n

n∑

i=1

(
2

i

n
+ 3

)

= lim
n→∞

1

n

[
2

(
n∑

i=1

i

n

)
+

(
n∑

i=1

3

)]
= lim

n→∞
1

n

[
2

n

(
n∑

i=1

i

)
+ 3n

]

= lim
n→∞

1

n

[
2

n
· n(n + 1)

2
+ 3n

]
= lim

n→∞
1

n
[(n + 1) + 3n] = lim

n→∞
1

n
[4n + 1]

= lim
n→∞

[
4n

n
+

1

n

]
= lim

n→∞

[
4 +

1

n

]
= 4 + 0 = 4 !

b. Let u = x2; since x ≥ 0, x =
√

u. Then, using the Chain Rule and the Fundamental
Theorem of Calculus,

dy

dx
=

dy

du
· du

dx
=

(
d

du

∫ u

0

√
t dt

)
· du

dx
=

√
u · du

dx
=

√
x2 · d

dx
x2 = x · 2x = 2x2 !

c. Note that y =
√

1 − x2, −1 ≤ x ≤ 1, is the upper half of the unit circle x2 + y2 = 1.

This circle has area π12 = π, so
1∫

−1

√
1 − x2 dx, which represents the area of the upper half

of the circle, is equal to π
2 . !

3. Water is poured at a rate of 1 m3/min into a conical tank (set up point down) 2 m
high and with radius 1 m at the top. How quickly is the water rising in the tank at
the instant that it is 1 m deep over the tip of the cone? [8]

(The volume of a cone of height h and radius r is 1
3πr2h.)

Solution. At any given instant, the water in the tank occupies a conical volume, with
height – that is, depth in the tank – h and radius r in the same proportions as the tank
as a whole.

2
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Hence r
h = 1

2 , so r = h
2 , and it follows that the volume of the water at the given

instant is

V =
1

3
πr2h =

1

3
π

(
h

2

)2

h =
1

12
πh3 .

Note that the rate at which the water is rising in the tank is dh
dt

.

Since, on the one hand dV
dt = 1 m3/min, and on the other hand

dV

dt
=

d

dt

(
1

12
πh3

)
=

d

dh

(
1

12
πh3

)
· dh

dt
=

1

12
π · 3h2 · dh

dt
=

1

4
πh2 · dh

dt
,

we know that any given instant, dh
dt = dV

dt / 1
4πh2 = 1/ 1

4πh2 = 4/πh2. At the particular

instant that h = 1 m, it follows that dh
dt = 4/π12 = 4/π m/min. !

4. Consider the region in the first quadrant with upper boundary y = x2 and lower
boundary y = x3, and also the solid obtained by rotating this region about the y-axis.

a. Sketch the region and find its area. [4]

b. Sketch the solid and find its volume. [7]

c. What is the average area of either a washer or a shell (your pick!) for the solid? [1]

Solution.

a. First, we find the points of intersection of the two curves: if x2 = x3, then x = 0 or
x = x3/x2 = 1. Note that when 0 ≤ x ≤ 1, then x3 = x2 · x ≤ x2 · 1 = x2. It’s not too
hard to see that the region between the curves looks more or less like:

3
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The area of the region is then

∫ 1

0

(
x2 − x3

)
dx =

(
x3

3
− x4

4

)∣∣∣∣
1

0

=

(
1

3
− 1

4

)
− (0 − 0) =

1

12
!

b. Rotating (revolving, whatever . . . ) the region about the y-axis produces the following
solid.

The volume of this solid is a little easier to compute using shells than using washers.
Since we rotated the region about a vertical line, we will use x as the variable of integration;
note that 0 ≤ x ≤ 1 over the region in question. With respect to x, a generic cylindrical
shell has radius r = x − 0 = x and height h = x2 − x3. Thus the volume of the solid is

∫ 1

0

2πrh dx =

∫ 1

0

2πx
(
x2 − x3

)
dx = 2π

∫ 1

0

(
x3 − x4

)
dx

= 2π

(
x4

4
− x5

5

)∣∣∣∣
1

0

= 2π

[(
1

4
− 1

5

)
− (0 − 0)

]
= 2π

1

20
=

π

10
. !

c. From b we know that the area of the cylindrical shell for x, where 0 ≤ x ≤ 1, is
2πx

(
x2 − x3

)
. Thus the average area of a cylindrical shell for this solid is

1

1 − 0

∫ 1

0

2πx
(
x2 − x3

)
dx = 1 · π

10
=

π

10
. !

4
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Mathematics 110 – Calculus of one variable
Trent University 2002-2003

Quiz Solutions

Quiz #1. (§A) Wednesday, 18 September, 2001. [10 minutes]

12:00 Seminar

1. Compute lim
x→2

x2 − x − 2

x − 2
or show that this limit does not exist. [5]

Solution.

lim
x→2

x2 − x − 2

x − 2
= lim

x→2

(x − 2)(x + 1)

x − 2
= lim

x→2
(x + 1) = 2 + 1 = 3 !

2. Sketch the graph of a function f(x) which is defined for all x and for which lim
x→0

f(x) =

1, lim
x→2+

f(x) does not exist, and lim
x→2−

f(x) = 4. [5]

Solution.

!

13:00 Seminar

1. Compute lim
x→2−

x2 − x + 2

x − 2
or show that this limit does not exist. [5]

Solution. Note that lim
x→2−

x2 − x + 2 = 22 − 2 +2 = 4 and lim
x→2−

x − 2 = 0. It follows that

lim
x→2−

x2 − x + 2

x − 2
fails to exist. (Since when x is a bit less than 2, x2 −x+2 is about 4 and

x − 2 is a bit less than 0, it lim
x→2−

x2 − x + 2

x − 2
= −∞.) !

1
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2. Sketch the graph of a function g(x) which is defined for all x, and for which lim
x→0

g(x) =

∞, lim
x→2

g(x) does not exist, and g(x) does not have an asymptote at x = 2. [5]

Solution.

!

Quiz #2. (§A) Wednesday, 25 September, 2001. [10 minutes]

12:00 Seminar

1. Use the ε − δ definition of limits to verify that lim
x→3

(5x − 7) = 8. [10]

Solution. We need to show that given any ε > 0, one can find a δ > 0 such that if
|x − 3| < δ, then |(5x − 7) − 8| < ε. Suppose we are given an ε > 0. Then

|(5x − 7) − 8| < ε

⇐⇒ |5x − 15| < ε

⇐⇒ 5|x − 3| < ε

⇐⇒ |x − 3| <
ε

5
,

so δ =
ε

5
will do the job. !

13:00 Seminar

1. Use the ε − δ definition of limits to verify that lim
x→2

(3 − 2x) = −1. [10]

Solution. We need to show that given any ε > 0, one can find a δ > 0 such that if
|x − 2| < δ, then |(3 − 2x) − (−1)| < ε. Suppose we are given an ε > 0. Then

|(3 − 2x) − (−1)| < ε

⇐⇒ |(3 − 2x) + 1| < ε

⇐⇒ |4 − 2x| < ε

⇐⇒ 2|x − 2| = 2|2 − x| < ε

⇐⇒ |x − 2| <
ε

2
,

2
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so δ =
ε

2
will do the job. !

Quiz #3. Wednesday, 2 October, 2001. [10 minutes]

12:00 Seminar

1. For which values of the constant c is the function

f(x) =

{
ecx x ≥ 0

cx + 1 x < 0

continuous at x = 0? Why? [10]

Solution. For f(x) to be continuous at x = 0 we need to have f(0), lim
x→0−

f(x), and

lim
x→0+

f(x) all be defined and equal to each other:

f(0) = ec0 = e0 = 1

lim
x→0−

f(x) = lim
x→0−

cx + 1 = c0 + 1 = 1

lim
x→0+

f(x) = lim
x→0+

ecx = ec0 = e0 = 1

Since all three are defined and equal to 1, no matter what the value of c, f(x) is
continuous at x = 0. !

13:00 Seminar

1. For which values of the constant c is the function

f(x) =

{
ecx x ≥ 0

c(x + 1) x < 0

continuous at x = 0? Why? [10]

Solution.For f(x) to be continuous at x = 0 we need to have f(0), lim
x→0−

f(x), and

lim
x→0+

f(x) all be defined and equal to each other:

f(0) = ec0 = e0 = 1

lim
x→0−

f(x) = lim
x→0−

c(x + 1) = c(0 + 1) = c

lim
x→0+

f(x) = lim
x→0+

ecx = ec0 = e0 = 1

All three are defined for all values of c, but are equal to each other only for c = 1.
hence f(x) is continuous at x = 0 exactly when c = 1. !
Quiz #4. Wednesday, 9 October, 2002. [12 minutes]

12:00 Seminar

Suppose

f(x) =





x x < 0

0 x = 0

2x2 + x x > 0

.

3
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1. Use the definition of the derivative to check whether f ′(0) exists and compute it if it
does. [7]

Solution. By definition, f ′(0) = lim
h→0

f(0 + h) − f(0)

h
. For this limit to exist, both of

lim
h→0−

f(0 + h) − f(0)

h
and lim

h→0+

f(0 + h) − f(0)

h
must be defined and be equal:

i. By the definition of f(x), f(0) = 0 and f(x) = x when x < 0. It follows that:

lim
h→0−

f(0 + h) − f(0)

h
= lim

h→0−

(0 + h) − 0

h
= lim

h→0−

h

h
= lim

h→0−
1 = 1

ii. By the definition of f(x), f(0) = 0 and f(x) = 2x2 + x when x > 0. It follows that:

lim
h→0+

f(0 + h) − f(0)

h
= lim

h→0+

[
2(0 + h)2 + (0 + h)

]
− 0

h

= lim
h→0+

2h2 + h

h
= lim

h→0+
(2h + 1) = 1

Thus f ′(0) exists and equals 1. !
2. Compute f ′(1) (any way you like). [3]

Solution. By the definition of f(x), f(x) = 2x2 + x when x > 0. Thus, when x > 0,
f ′(x) = 2 · 2x + 1 = 4x + 1. Since 1 > 0 . . . ), it follows that f ′(1) = 4 · 1 + 1 = 5. !

13:00 Seminar

Suppose g(x) =
1

x + 1
. Compute g′(x) using

1. the rules for computing derivatives [3] , and

Solution. Using the Quotient Rule (and some other bits and pieces . . . ):

g′(x) =
d

dx

(
1

x + 1

)
=

(
d
dx1

)
· (x + 1) − 1 ·

(
d
dx(x + 1)

)

(x + 1)2

=
0 · (x + 1) − 1 · (1 + 0)

(x + 1)2
=

−1

(x + 1)2
!

2. the definition of the derivative. [7]

Solution. Here goes!

g′(x) = lim
h→0

1
(x+h)+1 − 1

x+1

h
= lim

h→0

(x+1)−(x+h+1)
(x+h)+1)(x+1)

h
= lim

h→0

−h

h(x + h) + 1)(x + 1)

= lim
h→0

−1

(x + h) + 1)(x + 1)
=

−1

(x + 1)(x + 1)
=

−1

(x + 1)2
!

4
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Quiz #5. Wednesday, 16 October, 2002. [10 minutes]

12:00 Seminar

Compute
d

dx
5√x using

1. the Power Rule [2] , and

Solution.
d

dx
5
√

x =
d

dx
x1/5 =

1

5
x(1/5)−1 =

1

5
x−4/5 =

1

5x4/5
!

2. the fact that f(x) = 5
√

x is the inverse function of g(x) = x5. [8]

Solution. Since f(x) = 5
√

x is the inverse function of g(x) = x5, x = g(f(x)) =
(
5
√

x
)5

.
Differentiating both sides gives:

1 =
dx

dx
=

d

dx

(
5
√

x
)5

=
d

dx
u5 (Where u = 5

√
x.)

=

(
d

du
u5

)
· du

dx
(Using the Chain Rule.)

= 5u4 · du

dx

= 5
(
5
√

x
)4 · d

dx
5
√

x

= 5x4/5 · d

dx
5
√

x

Solving this equation for d
dx

(
5
√

x
)

gives
d

dx
5
√

x =
1

5x4/5
. !

13:00 Seminar

1. Compute
d

dx
arccos(x) given that x = cos (arccos(x)) and cos2(x) + sin2(x) = 1. [10]

Solution. Differentiating both sides of x = cos (arccos(x)) gives:

1 =
dx

dx
=

d

dx
cos (arccos(x))

=
d

dx
cos(u) (Where u = arccos(x).)

=

(
d

du
cos(u)

)
· du

dx
(Using the Chain Rule.)

= (− sin(u)) · du

dx

= (− sin (arccos(x))) · d

dx
arccos(x)

Solving this equation for
d

dx
arccos(x) gives

d

dx
arccos(x) =

1

− sin (arccos(x))
=

−1

sin (arccos(x))
,

5
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which answer can be simplified considerably. Since cos2(x) + sin2(x) = 1, it follows that
sin(x) =

√
1 − cos2(x), so

d

dx
arccos(x) =

−1

sin (arccos(x))
=

−1√
1 − cos2 (arccos(x))

=
−1√

1 − (cos (arccos(x)))
2

=
−1√
1 − x2

since, once again, x = cos (arccos(x)). !

Quiz #6. Wednesday, 30 October, 2002. [10 minutes]

12:00 Seminar

1. Find the absolute and local maxima and minima of f(x) = x3 +2x2 −x−2 on [−2, 2].
[10]

Solution. First, note that f(x) is defined and continuous throughout [−2, 2]. At the
endpoints we get f(−2) = (−2)3 + 2 · (−2)2 − (−2) − 2 = −8 + 8 + 2 − 2 = 0 and
f(2) = 23 + 2 · 22 − 2 − 2 = 8 + 8 − 2 − 2 = 12.

Second, f ′(x) =
d

dx

(
x3 + 2x2 − x − 2

)
= 3x2 +2 ·2x−1 = 3x2 +4x−1, which is also

defined throughout [−2, 2]. To find the critical points we use the quadratic formula:

f ′(x) = 0 ⇐⇒ 3x2 + 4x − 1 = 0

⇐⇒ x =
−4 ±

√
42 − 4 · 3 · (−1)

2 · 3

⇐⇒ x =
−4 ±

√
16 + 12)

6

⇐⇒ x =
−4 ±

√
28

6

⇐⇒ x =
−4 ± 2

√
7

6

⇐⇒ x =
−2 ±

√
7

3

The problem here is that −2±
√

7
3 is not a terribly nice pair of numbers to play with. One

could use a calculator to get results which are close enough for our purposes, or one can

use the fact that 2 <
√

7 < 3 to observe that − 5
3 < −2−

√
7

3 < − 4
3 and 0 < −2+

√
7

3 < 1
3 .

Either way, both −2−
√

7
3

and −2+
√

7
3

are in the interval [−2, 2].
It remains to determine the values of f(x) at the critical points and compare these to

each other and to the values at the endpoints. We leave this to the reader; one can use a
calculator or approximations to figure out what is going on . . . !

13:00 Seminar

6
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1. Find the absolute and local maxima and minima of f(x) = x3 −3x2 −x+3 on [−2, 2].
[10]

Solution. First, note that f(x) is defined and continuous throughout [−2, 2]. At the
endpoints we get f(−2) = (−2)3 − 3 · (−2)2 − (−2) + 3 = −8 − 12 + 2 + 3 = −15 and
f(2) = 23 − 3 · 22 − 2 + 3 = 8 − 12 − 2 + 3 = −3.

Second, f ′(x) =
d

dx

(
x3 − 3x2 − x + 3

)
= 3x2 −3 ·2x−1 = 3x2 −6x−1, which is also

defined throughout [−2, 2]. To find the critical points we use the quadratic formula:

f ′(x) = 0 ⇐⇒ 3x2 − 6x − 1 = 0

⇐⇒ x =
−(−6) ±

√
(−6)2 − 4 · 3 · (−1)

2 · 3

⇐⇒ x =
6 ±

√
36 + 12)

6

⇐⇒ x =
6 ±

√
48

6

⇐⇒ x =
6 ± 4

√
3

6

⇐⇒ x =
3 ± 2

√
3

3

The problem here is that 3±2
√

3
3 is not a terribly nice pair of numbers to play with. One

could use a calculator to get results which are close enough for our purposes. Using the

fact that 1 <
√

3 < 2 to observe that − 1
3 < 3−2

√
3

3 < 1
3 and 5

3 < 3+2
√

3
3 < 3 does not even

tell us whether the second root falls in the interval [−2, 2] . . .
It remains to determine the values of f(x) at the critical points and compare these to

each other and to the values at the endpoints. We leave this to the reader; one can use a
calculator or (better) approximations to figure out what is going on . . . !

Quiz #7. Wednesday, 6 November, 2002. [15 minutes]

12:00 Seminar

1. Find the intercepts, critical and inflection points, and horizontal asymptotes of f(x) =
(x − 2)ex and sketch its graph. [10]

Solution. Note that f(x) = (x−2)ex is defined and continuous everywhere; in particular,
it has no vertical asymptotes.

i. Intercepts: For the x-intercept, since ex %= 0 for all x, f(x) = 0 exactly when x−2 = 0,
i.e. when x = 2. For the y-intercept, note that f(0) = (0 − 2)e0 = −2 · 1 = −2.

ii. Critical points: First,

f ′(x) =
d

dx
(x − 2)ex =

(
d

dx
(x − 2)

)
· ex + (x − 2)

(
d

dx
ex

)

= ex + (x − 2)ex = (x − 1)ex ,

7
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which is defined and continuous for all x. Since ex > 0 for all x, f ′(x) = 0 precisely
when x = 1. Note that because f ′(x) = (x − 1)ex < 0 for all x < 1 and f ′(x) > 0 for
all x > 1, f(x) has a local minimum at the critical point.

iii. Inflection points: First,

f ′′(x) =
d

dx
(x − 1)ex =

(
d

dx
(x − 1)

)
· ex + (x − 1) ·

(
d

dx
ex

)

= ex + (x − 1)ex = xex ,

which is defined and continuous for all x. Since ex > 0 for all x, f ′′(x) = 0 precisely
when x = 0. Because f ′′(x) = xex < 0 for all x < 0 and f ′′(x) > 0 for all x > 0, f(x)
has an inflection point at x = 0.

iv. Horizontal asymptotes: First,

lim
t→−∞

(x − 2)ex = lim
t→∞

x − 2

e−x
= lim

t→−∞

d
dx

(x − 2)
d
dx

e−x
= lim

t→−∞
1

e−x
= 0

using l’Hôpital’s Rule because lim
t→−∞

(x − 2) = ∞ and lim
t→−∞

e−x = ∞. It follows that

h(x) has a horizontal asymptote of y = 0 in the negative x direction. Second,

lim
t→∞

(x − 2)ex = ∞

because lim
t→∞

(x − 2) = ∞ and lim
t→∞

ex = ∞. It follows that h(x) has no horizontal

asymptote in the positive x direction.

v. The graph:

!

8
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13:00 Seminar

1. Find the intercepts, critical and inflection points, and horizontal asymptotes of h(x) =
(x + 1)e−x and sketch its graph. [10]

Solution. Note that h(x) = (x+1)e−x is defined and continuous everywhere; in particular,
it has no vertical asymptotes.

i. Intercepts: For the x-intercept, since ex != 0 for all x, h(x) = 0 exactly when x+1 = 0,
i.e. when x = −1. For the y-intercept, note that h(0) = (0 − 1)e−0 = −1 · 1 = −1.

ii. Critical points: First,

h′(x) =
d

dx
(x + 1)e−x =

(
d

dx
(x + 1)

)
· e−x + (x + 1)

(
d

dx
e−x

)

= e−x + (x + 1)
(
−e−x

)
= −xe−x ,

which is defined and continuous for all x. Since ex > 0 for all x, h′(x) = 0 precisely
when x = 0. Note that because h′(x) = −xe−x > 0 for all x < 0 and h′(x) < 0 for all
x > 0, h(x) has a local maximum at the critical point.

iii. Inflection points: First,

h′′(x) =
d

dx

(
−xe−x

)
=

(
d

dx
(−x)

)
· e−x + (−x) ·

(
d

dx
e−x

)

= −e−x − x ·
(
−e−x

)
= (x − 1)e−x ,

which is defined and continuous for all x. Since ex > 0 for all x, h′′(x) = 0 precisely
when x = 1. Because h′′(x) = (x − 1)e−x < 0 for all x < 1 and h′′(x) > 0 for all
x > 1, h(x) has an inflection point at x = 1.

iv. Horizontal asymptotes: First,

lim
t→−∞

(x + 1)e−x = −∞

since lim
t→−∞

(x + 1) = −∞ and lim
t→−∞

e−x = ∞. It follows that h(x) has no horizontal

asymptote in the negative x direction. Second,

lim
t→∞

(x + 1)e−x = lim
t→∞

x + 1

ex
= lim

t→∞

d
dx(x + 1)

d
dxex

= lim
t→∞

1

ex
= 0

using l’Hôpital’s Rule because lim
t→∞

(x+1) = ∞ and lim
t→∞

ex = ∞. It follows that h(x)

has a horizontal asymptote of y = 0 in the positive x direction.

9

103



v. The graph:

!

Quiz #8. Wednesday, 27 November, 2002. [15 minutes]

12:00 Seminar

1. Compute: ∫ eπ

1

1

x
sin (ln(x)) dx [5]

Solution. We’ll use the substitution u = ln(x) and change the limits when we do.
Note that du = 1

xdx and that when x = 1, u = ln(1) = 0, and that when x = eπ,
u = ln (eπ) = πln(e) = π · 1 = π. Then

∫ eπ

1

1

x
sin (ln(x)) dx =

∫ π

0

sin(u)du = cos(u)|π0 = cos(π) − cos(0) = (−1) − 1 = −2

does the job. !
2. What definite integral does the Right-hand Rule limit

lim
n→∞

n∑

i=1

(
1 +

i

n

)
· 1

n

correspond to? [5]

Solution. The general formula for the Right-hand Rule is:

∫ b

a

f(x)dx = lim
n→∞

n∑

i=1

f

(
a + i

b − a

n

)
· b − a

n

10
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Here b−a
n is the width and f

(
a + i b−a

n

)
is the height of the ith rectangle in the Riemann

sum using a partition of [a, b] into n equal subintervals and evaluating f(x) at the right
endpoint of each subinterval to find the height of the corresponding rectangle.

We compare the right hand side of the formula to the given limit and try to indentify
a, b, and f . Comparing the given common width 1

n of the rectangles with b−a
n tells us

that b − a = 1; comparing 1 + i
n with f

(
a + i b−a

n

)
, it is a reasonable guess that a = 1

(so b = 1 + 1 = 2). If so, then f(x) does nothing to x, i.e. f(x) = x. Hence the desired
definite integral could be: ∫ 2

1

xdx

This is not the only solution. For example, if one had instead guessed that a = 0 (so
b = 1), we would get that f(x) = 1 + x and that the integral being sought was

∫ 1

0

(1 + x)dx

instead. In general, one could let a be any constant; then b = a + 1 and f(x) = 1 − a + x
do the job. !

13:00 Seminar

1. Compute: ∫ π/4

0

tan(x)

cos2(x)
dx [5]

Solution. We’ll use the fact that tan(x) = sin(x)
cos(x) to rewrite the function and then

use the substitution u = cos(x) and change the limits when we do. Note that du =
− sin(x)dx, so sin(x)dx = (−1)du. Also, when x = 0, u = cos(0) = 1, and when
x = π

4 , u = cos(π/4) = 1√
2
. Then

∫ π/4

0

tan(x)

cos2(x)
dx =

∫ π/4

0

sin(x)

cos(x)
· 1

cos2(x)
dx =

∫ π/4

0

sin(x)

cos3(x)
dx

=

∫ 1/
√

2

1

−1

u3
du = −

∫ 1/
√

2

1

u−3 du = − u−2

−2

∣∣∣∣
1/

√
2

1

=
1

2u2

∣∣∣∣
1/

√
2

1

=
1

2
(

1√
2

)2 − 1

2 (1)
2 =

1

2 1
2

− 1

2
=

1

1
− 1

2
= 1 − 1

2
=

1

2

does the job. !
2. What definite integral does the Right-hand Rule limit

lim
n→∞

n∑

i=1

(
2i

n
− 1

)
· 1

n

correspond to? [5]

11
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Solution. The general formula for the Right-hand Rule is:

∫ b

a

f(x)dx = lim
n→∞

n∑

i=1

f

(
a + i

b − a

n

)
· b − a

n

Here b−a
n is the width and f

(
a + i b−a

n

)
is the height of the ith rectangle in the Riemann

sum using a partition of [a, b] into n equal subintervals and evaluating f(x) at the right
endpoint of each subinterval to find the height of the corresponding rectangle.

We compare the right hand side of the formula to the given limit and try to indentify
a, b, and f . Comparing the given common width 1

n of the rectangles with b−a
n tells us that

b−a = 1; comparing 2i
n −1 with f

(
a + i b−a

n

)
, one could guess that a = 0 (so b = 0+1 = 1).

If so, then f(x) takes x to 2x − 1, i.e. f(x) = 2x − 1. Hence the desired definite integral
could be: ∫ 1

0

(2x − 1)dx

This is not the only solution. For example, if one had instead guessed that a = 1 (so
b = 2), we would get that f(x) = 2x − 3 and that the integral being sought was

∫ 2

1

(2x − 3)dx

instead. In general, one could let a be any constant; then b = a+1 and f(x) = 2x−2a−1
do the job. !
Quiz #9. Wednesday, 4 December, 2002. [15 minutes]

12:00 Seminar

1. Find the area of the region enclosed by y = −x2 and y = x2 − 2x. [10]

Solution. First, we need to find the points of intersection of the two curves. We set
−x2 = x2 − 2, rearrange this to give 2x2 = 2, and observe that the solutions are x = −1
and x = 1.

Second, note that if x is between −1 and 1, x2 < 1, so −x2 > −1 and x2 −2 < 1−2 =
−1. This tells us that for x between −1 and 1, the curve y = −x2 is above the curve
y = x2 − 2.

Third, the area of the region is thus given by:

∫ 1

−1

(
−x2 −

(
x2 − 2

))
dx =

∫ 1

−1

(
−2x2 + 2

)
dx = −2

3
x3 + 2x

∣∣∣∣
1

−1

=

(
−2

3
13 + 2(1)

)
−

(
−2

3
(−1)3 + 2(−1)

)

=
4

3
−

(
8

3

)
=

4

3
+

8

3
=

12

3
= 4 !
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13:00 Seminar

1. Find the area of the region enclosed by y = (x − 2)2 + 1 = x2 − 4x + 5 and y = x + 1.
[10]

Solution. First, we need to find the points of intersection of the two curves. We set
x2 − 4x+5 = x+1, rearrange this to give x2 − 5x+4 = 0, and observe that x2 − 5x+4 =
(x−4)(x−1). (Worst coming to worst, one could get that by using the quadratic formula.)
It follows that the solutions are x = 1 and x = 4.

Second, note that if x is between 1 and 4, x2 − 5x + 4 =
(
x2 − 4x + 5

)
− (x + 1) < 0,

because the parabola y = x2 − 5x + 4 opens upwards and its tip must be between its
zeros. This tells us that for x between 1 and 4, the line y = x + 1 is above the curve
y = x2 − 4x + 5.

Third, the area of the region is thus given by:

∫ 4

1

(
(x + 1) −

(
x2 − 4x + 5

))
dx =

∫ 4

1

(
−x2 + 5x − 4

)
dx = −1

3
x3 +

5

2
x2 − 4x

∣∣∣∣
4

1

=

(
−1

3
43 +

5

2
42 − 4 · 4

)
−

(
−1

3
13 +

5

2
12 − 4 · 1

)

=
44

3
− 11

6
=

77

6
!

Quiz #10. Wednesday, 8 January, 2003. [25 minutes]

12:00 Seminar

1. Sketch the solid obtained by rotating the region bounded by y = 0 and y = cos(x) for
π
2 ≤ x ≤ 3π

2 about the y-axis and find its volume. [10]

Solution. Observe that cos(x) ≤ 0 for π
2 ≤ x ≤ 3π

2 . The solid in question looks like this:

We will find the volume of this solid using the method of cylindrical shells. Since we
rotated about a vertical line, we will use x as the variable. Note that the cylinder whose
edge passes through x has height h = 0− cos(x) = − cos(x) and radius r = x−0 = x. The

13
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volume of the solid is:

V =

∫ 3π/2

π/2

2πrh dx

=

∫ 3π/2

π/2

2πx (− cos(x)) dx

= −2π

∫ 3π/2

π/2

x cos(x)dx

We use integration by parts with u = x and dv = cos(x)dx,

so du = dx and v = sin(x).

= −2π

[
x sin(x)|3π/2

π/2 −
∫ 3π/2

π/2

sin(x)dx

]

= −2π

[(
3π

2
sin

(
3π

2

)
− π

2
sin

(π

2

))
− (− cos(x)|3π/2

π/2

)]

= −2π

[(
3π

2
(−1) − π

2
1

)
+

(
cos

(
3π

2

)
− cos

(π

2

))]

= −2π

[
−4

2
π − (0 − 0)

]

= 4π2 !

13:00 Seminar

1. Sketch the solid obtained by rotating the region bounded by y = −1 and y = cos(x)
for 0 ≤ x ≤ π about the y-axis and find its volume. [10]

Solution. Observe that cos(x) ≥ −1 for 0 ≤ x ≤ π. The solid in question looks like this:

14
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We will find the volume of this solid using the method of cylindrical shells. Since we
rotated about a vertical line, we will use x as the variable. Note that the cylinder whose
edge passes through x has height h = cos(x)− (−1) = cos(x)+1 and radius r = x−0 = x.
The volume of the solid is:

V =

∫ π

0

2πrh dx

=

∫ π

0

2πx (cos(x) + 1) dx

= 2π

∫ π

0

x (cos(x) + 1) dx

We use integration by parts with u = x and dv = (cos(x) + 1) dx,

so du = dx and v = sin(x) + x.

= 2π

[
x (sin(x) + x)|π0 −

∫ π

0

(sin(x) + x) dx

]

= 2π

[
(π (sin(π) + π) − 0 (sin(0) + 0)) −

(
− cos(x) +

1

2
x2

∣∣∣∣
π

0

)]

= 2π

[
(π(0 + π) − 0) −

((
− cos(π) +

1

2
π2

)
−

(
− cos(0) +

1

2
02

))]

= 2π

[
π2 −

((
−(−1) +

1

2
π2

)
− (−1 − 0)

)]

= 2π

[
π2 −

(
2 +

1

2
π2

)]

= 2π

[
1

2
π2 − 2

]

= π3 − 4π !

Quiz #11. Wednesday, 15 January, 2002. [20 minutes]

12:00 Seminar

1. Compute

∫
1

1 − x2
dx.

Solution. We’ll use the trigonometric substitution x = sin(t); note that then dx =
cos(t)dt and cos(t) =

√
1 − x2.

∫
1

1 − x2
dx =

∫
1

1 − sin2(t)
cos(t)dt =

∫
1

cos2(t)
cos(t)dt

=

∫
1

cos(t)
dt =

∫
sec(t)dt = ln (sec(t) + tan(t)) + C

= ln

(
1

cos(t)
+

sin(t)

cos(t)

)
+ C = ln

(
1√

1 − x2
+

x√
1 − x2

)
+ C !
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13:00 Seminar

1. Compute

∫
x2

√
1 − x2

dx.

Solution. We’ll use the trigonometric substitution x = sin(t); note that then dx =
cos(t)dt, t = arcsin(x), and cos(t) =

√
1 − x2.

∫
x2

√
1 − x2

dx =

∫
sin2(t)√

1 − sin2(t)
cos(t)dt =

∫
sin2(t)

cos(t)
cos(t)dt

=

∫
sin2(t)dt =

∫
1

2
(1 − cos(2t)) dt =

1

2

(
t +

1

2
sin(2t)

)
+ C

=
1

2
t +

1

4
2 sin(t) cos(t) + C =

1

2
arcsin(x) +

1

2
x
√

1 − x2 + C !

Quiz #12. Wednesday, 22 January, 2002. [20 minutes]

12:00 Seminar

1. Compute

∫
3x2 + 4x + 2

x3 + 2x2 + 2x
dx.

Solution. This can be done by partial fractions, but since
d

dx

(
x3 + 2x2 + 2x

)
= 3x2 +

4x + 2, there is a quicker alternative, namely the substitution u = x3 + 2x2 + 2x:
∫

3x2 + 4x + 2

x3 + 2x2 + 2x
dx =

∫
1

u
du = ln(u) + C = ln

(
x3 + 2x2 + 2x

)
+ C

Not many people spotted this shortcut . . . !
13:00 Seminar

1. Compute

∫
2x + 1

x3 + 2x2 + x
dx.

Solution. Since we are trying to integrate a rational function and there are no readily
apparent shortcuts, we use partial fractions.

First, note that the degree of the numerator is already less than the degree of the
denominator.

Second, we factor the numerator as far as possible:

x3 + 2x2 + x = x
(
x2 + 2x + 1

)
= x (x + 1)

2

Third, it follows that

2x + 1

x3 + 2x2 + x
=

2x + 1

x (x + 1)
2 =

A

x
+

B

x + 1
+

C

(x + 1)2

for some constants A, B, and C . Putting the right-hand side over a common denominator
of x (x + 1)

2
and comparing numerators, we see that we must have:

2x + 1 = A(x + 1)2 + Bx(x + 1) + Cx

= A
(
x2 + 2x + 1

)
+ B

(
x2 + x

)
+ Cx

= (A + B)x2 + (2A + B + C)x + A

16
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Hence A + B = 0, 2A + B + C = 2, and A = 1, from which it follows pretty quickly that
B = −1 and C = 1.

Fourth, we compute the integral:
∫

2x + 1

x3 + 2x2 + x
dx =

∫ (
1

x
+

−1

x + 1
+

1

(x + 1)2

)
dx

=

∫
1

x
dx −

∫
1

x + 1
dx +

∫
1

(x + 1)2
dx

= ln(x) − lnx + 1 +
−1

x + 1
+ K

= ln

(
x

x + 1

)
− 1

x + 1
+ K

We’re using K for the generic constant because C has already been used . . . !
Quiz #13. Wednesday, 29 January, 2002. [15 minutes]

12:00 Seminar

1. Compute

∫ ∞

−∞
e−|x| dx or show that it does not converge. [10]

Solution. This is obviously an improper integral since there is an infinity in each limit of
integration.

∫ ∞

−∞
e−|x| dx =

∫ 0

−∞
e−|x| dx +

∫ ∞

0

e−|x| dx

=

∫ 0

−∞
e−(−x) dx +

∫ ∞

0

e−x dx

. . . since |a| = −a when a ≤ 0 and |a| = a when a ≥ 0.

= lim
t→−∞

∫ 0

t

ex dx + lim
t→∞

∫ t

0

e−x dx

= lim
t→−∞

ex|0t + lim
t→∞

−e−x
∣∣t
0

= lim
t→−∞

(
e0 − et

)
+ lim

t→∞

((
−e−t

)
−

(
−e−0

))

= lim
t→−∞

(
1 − et

)
+ lim

t→∞

(
1 − e−t

)

= 1 + 1 = 2

Note that lim
t→−∞

et = lim
t→∞

e−t = 0. !
13:00 Seminar

1. Compute

∫ 1

−1

x + 1
3
√

x
dx or show that it does not converge. [10]

Solution. This is an improper integral since f(x) =
x + 1

3
√

x
has an asymptote at x = 0,

which is in the interval over which the integral is taken. We will do a little bit of algebra
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first to simplify our task.

∫ 1

−1

x + 1
3
√

x
dx =

∫ 1

−1

(
x

3
√

x
+

1
3
√

x

)
dx

=

∫ 1

−1

(
x

x1/3
+

1

x1/3

)
dx

=

∫ 1

−1

(
x2/3 + x−1/3

)
dx

=

∫ 1

−1

x2/3 dx +

∫ 1

−1

x−1/3 dx

Note that the left integral is not improper.

=
3

5
x5/3

∣∣∣∣
1

−1

+

∫ 0

−1

x−1/3 dx +

∫ 1

0

x−1/3 dx

=

(
3

5
15/3 − 3

5
(−1)5/3

)
+ lim

t→0−

∫ t

−1

x−1/3 dx + lim
t→0+

∫ 1

t

x−1/3 dx

=

(
3

5
−

(
−3

5

))
+ lim

t→0−

3

2
x2/3

∣∣∣∣
t

−1

+ lim
t→0+

3

2
x2/3

∣∣∣∣
1

t

=

(
3

5
+

3

5

)
+ lim

t→0−

(
3

2
t2/3 − 3

2
(−1)2/3

)
+ lim

t→0+

(
3

2
12/3 − 3

2
t2/3

)

=
6

5
+ lim

t→0−

(
3

2
t2/3 − 3

2

)
+ lim

t→0+

(
3

2
− 3

2
t2/3

)

=
6

5
+

(
0 − 3

2

)
+

(
3

2
− 0

)

=
6

5
− 3

2
+

3

2

=
6

5

Note that lim
t→0−

t2/3 = lim
t→0+

t2/3 = 0. !
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Quiz #14. Wednesday, 5 February, 2002. [20 minutes]

12:00 Seminar

1. Sketch the solid obtained by rotating the region bounded by x = 0, y = 4 and y = x2

for 0 ≤ x ≤ 2 about the y-axis. [2]

Solution.

!

2. Compute the surface area of this solid. [8]

Solution. The surface of the solid has two parts: the disk at the top and the parabolic
surface below it. The disk has radius 2 and hence has area π22 = 4π. We compute the
area of the parabolic surface using the formula for the area of a surface of revolution. Note
that the radius R for the infinitesimal arc length at x is simply R = x − 0 = x. Then the
area of the parabolic surface is given by:

∫ 2

0

2πR ds =

∫ 2

0

2πx

√
1 +

(
dy

dx

)2

dx = π

∫ 2

0

2x

√
1 +

(
d

dx
x2

)2

dx

= π

∫ 2

0

2x

√
1 + (2x)

2
dx = π

∫ 2

0

2x
√

1 + 4x2 dx

Using the substitution u = 1 + 4x2 we get du = 8xdx, so

1

4
du = 2xdx. When x = 0, u = 1, and when x = 2, u = 17.

= π

∫ 17

1

√
u

1

4
du =

π

4

1

2
√

u

∣∣∣∣
17

1

=
π

4

(
1

2
√

17
− 1

2
√

1

)
=

π

8

(
1√
17

− 1

)

Thus the total surface area of the solid is 4π + π
8

(
1√
17

− 1
)

= π
8

(
31 +

√
17

)
. !
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13:00 Seminar

1. Sketch the curve given by the parametric equations x = 1 + cos(t) and y = sin(t),
where 0 ≤ t ≤ 2π. [3]

Solution.

!

2. Compute the arc-length of this curve using a suitable integral. [7]

Solution. We’ll use the parametric version of the arc-length formula:

∫ 2π

0

ds =

∫ 2π

0

√(
dx

dt

)2

+

(
dy

dt

)2

dt =

∫ 2π

0

√(
d

dt
((1 + cos(t))

)2

+

(
d

dt
sin(t)

)2

dt

=

∫ 2π

0

√
(0 − sin(t))

2
+ (cos(t))

2
dt =

∫ 2π

0

√
sin2(t) + cos2(t) dt

=

∫ 2π

0

√
1 dt =

∫ 2π

0

1 dt = t|2π
0 = 2π − 0 = 2π !

Quiz #15. Wednesday, 26 February, 2002. [20 minutes]

12:00 Seminar

1. Graph the polar curve r = sin(2θ), 0 ≤ θ ≤ 2π. [4]

Solution.

!

20
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2. Find the area of the region enclosed by this curve. [6]

Solution. The area can be computed as follows:

∫ 2π

0

1

2
r2 dθ =

∫ 2π

0

1

2
sin2(2θ)dθ =

1

2

∫ 2π

0

(
1

2
− 1

2
cos (2 · 2θ)

)
dθ

=
1

4

∫ 2π

0

(1 − cos (4θ)) dθ =
1

4

(
θ − 1

4
sin (4θ)

)∣∣∣∣
2π

0

=
1

4

(
2π − 1

4
sin (4 · 2π)

)
− 1

4

(
0 − 1

4
sin (0 · 2π)

)

=
1

4

(
2π − 1

4
sin (8π)

)
− 1

4

(
0 − 1

4
sin (0)

)

=
1

4
(2π − 0) − (0 − 0) =

pi

2
!

13:00 Seminar

1. Graph the polar curve r = cos(θ), 0 ≤ θ ≤ 2π. [4]

Solution.

!

2. Find the arc-length of this curve. [6]

Solution. Note that to find the arc-length of the curve we only need to trace it once, so
we only need 0 ≤ θ ≤ π. The arc-length can then be computed as follows:

∫ π

0

√
r2 +

(
dr

dθ

)2

dθ =

∫ π

0

√
cos2(θ) + (− sin(θ))

2
dθ

=

∫ π

0

√
cos2(θ) + sin2(θ) dθ =

∫ π

0

√
1 dθ

=

∫ π

0

1 dθ = θ|π0 = π − 0 = π !
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Quiz #16. Wednesday, 5 March, 2003. [15 minutes]

12:00 Seminar

Let ak =
1

(k + 1)(k + 2)
and sn =

n∑

k=0

ak.

1. Find a formula for sn in terms of n. [5]

Solution. Note that 1
(k+1)(k+2) = 1

k+1 − 1
k+2 . (Partial fractions!) Hence:

sn =
n∑

k=0

1

(k + 1)(k + 2)
=

n∑

k=0

[
1

k + 1
− 1

k + 2

]

=

[
1

1
− 1

2

]
+

[
1

2
− 1

3

]
+

[
1

3
− 1

4

]
+ · · · +

[
1

n
− 1

n + 1

]
+

[
1

n + 1
− 1

n + 2

]

=
1

1
− 1

n + 2
= 1 − 1

n + 2
!

2. Does
∞∑

k=0

ak converge? If so, what does it converge to? [5]

Solution. It converges to 1:

∞∑

k=0

ak =
∞∑

k=0

1

(k + 1)(k + 2)
= lim

n→∞
sn = lim

n→∞

(
1 − 1

n + 2

)
= 1 − 0 = 1 !

13:00 Seminar

Let ak = ln

(
k

k + 1

)
and sn =

n∑

k=1

ak.

1. Find a formula for sn in terms of n. [5]

Solution. The key here is that ln
(

a
b

)
= ln(a) − ln(b).

sn =

n∑

k=1

ln

(
k

k + 1

)
=

n∑

k=1

[ln(k) − ln(k + 1)]

= [ln(1) − ln(2)] + [ln(2) − ln(3)] + [ln(3) − ln(4)] + · · ·
+ [ln(n − 1) − ln(n)] + [ln(n) − ln(n + 1)]

= ln(1) − ln(n + 1) = 0 − ln(n + 1) = −ln(n + 1) !

2. Does
∞∑

k=0

ak converge? If so, what does it converge to? [5]

Solution. It does not converge. First, recall that ln(x) → ∞ as x → ∞. Now:

∞∑

k=1

ak =
∞∑

k=1

ln

(
k

k + 1

)
= lim

n→∞
sn = lim

n→∞
[−ln(n + 1)] = − lim

n→∞
ln(n + 1) = −∞ !
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Quiz #17. Wednesday, 12 March, 2003. [15 minutes]

12:00 Seminar

Determine whether each of the following series converges or diverges:

1.

∞∑

n=0

e−n [5] 2.

∞∑

n=1

1

arctan(n)
[5]

Solution for 1.
∞∑

n=0

e−n =
∞∑

n=0

1

en
=

∞∑

n=0

(
1

e

)n

converges because this is a geometric

series with |r| =

∣∣∣∣
1

e

∣∣∣∣ < 1. !

Solution for 2. Since

lim
n→∞

1

arctan(n)
=

1

limn→∞ arctan(n)
=

1

π/2
=

2

π
!= 0 ,

∞∑

n=1

1

arctan(n)
diverges by the Divergence Test. !

13:00 Seminar

Determine whether each of the following series converges or diverges:

1.

∞∑

n=0

1

n + 1
[5] 2.

∞∑

n=1

21/n2

[5]

Solution for 1.
∞∑

n=0

1

n + 1
diverges by the (general) p-test since the degree of the denom-

inator is 1, the degree of the numerator is 0, and their difference, 1 − 0 = 1, is not greater
than 1. (The divergence of this series can also be verified pretty quickly using the Integral
Test.) !
Solution for 2. Since

lim
n→∞

21/n2

= 2limn→∞ 1/n2

= 20 = 1 != 0 ,

∞∑
n=1

21/n2

diverges by the Divergence Test. !

Quiz #18. Wednesday, 17 March, 2003. [15 minutes]

12:00 Seminar

Determine whether each of the following series converges absolutely, converges condi-
tionally, or diverges:

1.
∞∑

n=0

(−1)n2n

n2 + 2
[5] 2.

∞∑

n=1

n!(−1)n

nn
[5]
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Solution for 1.
∞∑

n=0

(−1)n2n

n2 + 2
diverges by the Divergence Test: since

lim
n→∞

∣∣∣∣
(−1)n2n

n2 + 2

∣∣∣∣ = lim
n→∞

2n

n2 + 2
= lim

x→∞
2x

x2 + 2
= lim

x→∞
ln(2)2x

2x + 0
= lim

x→∞
(ln(2))

2
2x

2
= ∞

(using l’Hôpital’s Rule twice), it follows that lim
n→∞

(−1)n2n

n2 + 2
does not exist. !

Solution for 2.
∞∑

n=1

n!(−1)n

nn
converges absolutely since

∞∑

n=1

n!

nn
converges by the Com-

parison Test:

n!

nn
=

n(n − 1)(n − 2) · . . . · 3 · 2 · 1

n · n · n · . . . · n · n · n
=

n

n
· n − 1

n
· n − 2

n
· . . . · 3

n
· 2

n
· 1

n
≤ 1 · 2

n
· 1

n
=

2

n2

and
∑

n=1

2

n2
= 2

∑

n=1

1

n2
converges by the p-test because 2 − 0 > 1. !

13:00 Seminar

Determine whether each of the following series converges absolutely, converges condi-
tionally, or diverges:

1.
∞∑

n=0

(−1)n
(
2n2 + 3n + 4

)

3n2 + 4n + 5
[5] 2.

∞∑

n=1

cos(nπ)

n2
[5]

Solution for 1.
∞∑

n=0

(−1)n
(
2n2 + 3n + 4

)

3n2 + 4n + 5
diverges by the Divergence Test: since

lim
n→∞

∣∣∣∣∣
(−1)n

(
2n2 + 3n + 4

)

3n2 + 4n + 5

∣∣∣∣∣ = lim
n→∞

2n2 + 3n + 4

3n2 + 4n + 5
= lim

n→∞
2n2 + 3n + 4

3n2 + 4n + 5
·

1
n2

1
n2

= lim
n→∞

2 + 3
n + 4

n2

3 + 4
n + 5

n2

=
2 + 0 + 0

3 + 0 + 0
=

2

3

it follows that lim
n→∞

(−1)n
(
2n2 + 3n + 4

)

3n2 + 4n + 5
$= 0. !

Solution for 2. Note that cos(π) = −1, cos(2π) = 1 = (−1)2, cos(3π) = −1 = (−1)3,
cos(4π) = 1 = (−1)4, and so on. It follows that the given series is the alternating series
∞∑

n=1

(−1)n

n2
. This converges absolutely because

∞∑

n=1

1

n2
converges by the p-test since 2−0 >

1. !
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Bonus Quiz. Friday, 19 March, 2003. [15 minutes]

1. A smiley face is drawn on the surface of a balloon which is being inflated at a rate of
10 cm3/s. At the instant that the radius of the balloon is 10 cm the eyes are 10 cm
apart, as measured inside the balloon. How is the distance between them changing
at this moment? [10]

Solution. !
Quiz #19. Wednesday, 24 March, 2003. [20 minutes]

12:00 Seminar

Consider the power series
∞∑

n=0

2nx2n

n!
.

1. For which values of x does this series converge? [6]

Solution. !
2. This series is equal to a (reasonably nice) function. What is it? Why? [4]

Solution. !
13:00 Seminar

Consider the power series
∞∑

n=0

2nxn+1

n + 1
.

1. For which values of x does this series converge? [6]

Solution. !
2. This series is equal to a (reasonably nice) function. What is it? Why? [4]

Solution. !
Quiz #20. Wednesday, 2 April, 2003. [20 minutes]

12:00 Seminar

Let f(x) = sin(π − 2x).

1. Find the Taylor series at a = 0 of f(x). [6]

Solution. !
2. Find the radius and interval of convergence of this Taylor series. [4]

Solution. !
13:00 Seminar
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Let f(x) = ln(2 + x).

1. Find the Taylor series at a = 0 of f(x). [6]

Solution. !
2. Find the radius and interval of convergence of this Taylor series. [4]

Solution. !
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Mathematics 110 – Calculus of one variable
Trent University, 2002-2003

Test #1 - Section A
Wednesday, 13 November, 2002

Time: 50 minutes

Solutions to page 1

1. Do any one of a – c. [10/100]

a. Use the ε− δ definition of limits to verify that lim
x→1

(7x + 3) = 10.

Solution. We need to check that for any ε > 0 there is a δ > 0 so that if |x− 1| < δ, then
|(7x + 3) − 10| < ε. As usual, we try to reverse engineer the δ we need from the desired
outcome:

|(7x + 3) − 10| < ε

⇐⇒ |7x − 7| < ε

⇐⇒ |7(x − 1)| < ε

⇐⇒ 7|x − 1| < ε

⇐⇒ |x − 1| <
ε

7

Since every step above is reversible, δ = ε
7

does the job. It follows by the ε − δ definition
of limits that lim

x→1
(7x + 3) = 10. �

b. Use the limit definition of the derivative to verify that
d

dx
(ex) = ex.

(You may assume that lim
h→0

eh−1
h = 1.)

Solution. Apply the definition f �(x) = lim
h→0

f(x+h)−f(x)
h to f(x) = ex:

d

dx
(ex) = lim

h→0

ex+h − ex

h
= lim

h→0

exeh − ex

h

= lim
h→0

ex
�
eh − 1

�

h
= ex lim

h→0

eh − 1

h
= ex · 1 = ex

Hence, by the limit definition of the derivative,
d

dx
(ex) = ex. �

1
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c. Compute ompute lim
x→0

x

tan(2x)
.

Solution 1. Note that lim
x→0

x = 0 and lim
x→0

tan(2x) = tan(2 · 0) = tan(0) = 0, so the limit

in question is an indeterminate form to which we can apply l’Hôpital’s Rule:

lim
x→0

x

tan(2x)
= lim

x→0

d
dxx

d
dx tan(2x)

= lim
x→0

1

sec2(2x) · d
dx(2x)

= lim
x→0

1

2 sec2(2x)

=
1

2 sec2(0)
=

1

2 · 12
=

1

2

(Note that sec(0) =
1

cos(0)
=

1

1
= 1.) Hence lim

x→0

x

tan(2x)
=

1

2
. �

Solution 2. Note that tan(2x) =
sin(2x)

cos(2x)
and recall that lim

t→0

sin(t)
t = lim

t→0

t
sin(t) = 1. It

follows that:

lim
x→0

x

tan(2x)
= lim

x→0

x
sin(2x)
cos(2x)

= lim
x→0

x cos(2x)

sin(2x)

=
�

lim
x→0

cos(2x)
��

lim
x→0

2x

2 sin(2x)

�

= cos(2 · 0)

�
1

2
lim
x→0

2x

sin(2x)

�
= cos(0) · 1

2
· 1 = 1 · 1

2
=

1

2

Hence lim
x→0

x

tan(2x)
=

1

2
. �

2. Do any two of a – c. [15/100 each]

a. Find the equation of the tangent line to y =
√

x at x = 4.

Solution. The tangent line in question passes through the point
�
4,
√

4
�

= (4, 2) and its
slope is given by:

d

dx

√
x

����
4

=
1

2
√

x

����
4

=
1

2
√

4
=

1

4

The equation of the tangent line is therefore given by y − 2 = 1
4 (x − 4), which works out

to y = 1
4x + 1. �

b. Is the function f(x) = x · |x| differentiable at x = 0? Why or why not?

Solution. We need to check that f �(0) = lim
h→0

f(0+h)−f(0)
h is defined; this boils down to

checking that lim
h→0−

f(0+h)−f(0)
h and lim

h→0+

f(0+h)−f(0)
h both exist and are equal.

2
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First, note that f(0) = 0 · |0| = 0. Second, if h < 0, then |h| = −h. Hence:

lim
h→0−

f(0 + h) − f(0)

h
= lim

h→0−

f(h) − 0

h

= lim
h→0−

h · |h|
h

= lim
h→0−

h · (−h)

h
= lim

h→0−
(−h) = −0 = 0

Third, if h > 0, then |h| = h. Hence:

lim
h→0+

f(0 + h) − f(0)

h
= lim

h→0+

f(h) − 0

h

= lim
h→0+

h · |h|
h

= lim
h→0+

h · h

h
= lim

h→0+
h = 0

It follows that that f �(0) = lim
h→0

f(0+h)−f(0)
h is defined (and equals 0). �

c. Use the limit definition of the derivative to verify the Sum Rule, i.e. that if
h(x) = f(x) + g(x), then h�(x) = f �(x) + g�(x).

Solution. Here goes:

h�(x) = lim
k→0

h(x + k) − h(x)

k

= lim
k→0

(f(x + k) + g(x + k)) − (f(x) + g(x))

k

= lim
k→0

f(x + k) − f(x) + g(x + k) − g(x)

k

= lim
k→0

�
f(x + k)− f(x)

k
+

g(x + k) − g(x)

k

�

=

�
lim
k→0

f(x + k)− f(x)

k

�
+

�
lim
k→0

g(x + k) − g(x)

k

�

= f �(x) + g�(x)

. . . and that’s all! �

3
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Mathematics 110 – Calculus of one variable
Trent University, 2002-2003

Sollutions for Test #2 - Section A

1. Compute any three of the integrals in parts a-f. [36 = 3 × 12 each]

a.

∫ 1

0

arctan(x)dx b.

∫ ee

e

ln (ln(x))

xln(x)
dx c.

∫
1

x2 − 3x + 2
dx

d.

∫
1

x2 + 2x + 2
dx e.

∫ π/4

0

sec4(x)dx f.

∫ ∞

2

1

x4
dx

Solutions:

a. We’ll use integration by parts, with u = arctan(x) and dv = dx, so du =
1

1 + x2
dx and

v = x.

∫ 1

0

arctan(x)dx = x arctan(x)|10 = 1 · arctan(1) − 0 · arctan(0) = 1 · π

4
− 0 · 0 =

π

4
!

b. Here we’ll substitute whole hog, namely u = ln (ln(x)). Note that then

du

dx
=

1

ln(x)
· d

dx
ln(x) =

1

ln(x)
· 1

x
.

Also, when x = e,
u = ln (ln(e)) = ln(1) = 0 ,

and when x = ee,

u = ln (ln (ee)) = ln (eln(e)) = ln(e · 1) = ln(e) = 1 .

Hence ∫ ee

e

ln (ln(x))

xln(x)
dx =

∫ 1

0

u du =
1

2
u2

∣∣∣∣
1

0

=
1

2
12 − 1

2
02 =

1

2
. !

c. This one is a job for integration by partial fractions. Since x2 − 3x+2 = (x− 2)(x− 1),

1

x2 − 3x + 2
=

1

(x − 2)(x − 1)
=

A

x − 2
+

B

x − 1
,

where 1 = A(x − 1) + B(x − 2) = (A + B)x + (−A − 2B). It follows that 0 = A + B, so
A = −B, and 1 = −A − 2B = B − 2B = −B, so B = −1 and A = 1. Then:

∫
1

x2 − 3x + 2
dx =

∫ (
1

x − 2
− 1

x − 1

)
dx =

∫
1

x − 2
dx −

∫
1

x − 1
dx

= ln(x − 2) − ln(x − 1) + C = ln

(
x − 2

x − 1

)
+ C !

1
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d. Note that x2 + 2x + 2 = x2 + 2x + 1 + 1 = (x + 1)2 + 1. We will use the substitution

u = x + 1, so du = dx, and the fact that
d

du
arctan(u) =

1

u2 + 1
:

∫
1

x2 + 2x + 1
dx =

∫
1

(x + 1)2 + 1
dx =

∫
1

u2 + 1
du = arctan(u) + C !

e. Here we will use the fact that sec2(x) = 1+tan2(x) and the substitution u = tan(x), so

du = sec2(x)dx. Note that when x = 0, u = tan(0) = 0, and when x =
π

4
, u = tan

(
π
4

)
= 1.

∫ π/4

0

sec4(x)dx =

∫ π/4

0

sec2(x) sec2(x)dx

=

∫ π/4

0

(
1 + tan2(x)

)
sec2(x)dx =

∫ 1

0

(
1 + u2

)
du

=

(
u +

1

3
u3

)∣∣∣∣
1

0

=

(
1 +

1

3
· 13

)
−

(
0 +

1

3
· 03

)
=

4

3
!

f. Since it has an infinity in one of the limits of integration, this is obviously an improper
integral.

∫ ∞

2

1

x4
dx =

∫ ∞

2

x−4 dx = lim
t→∞

∫ t

2

x−4 dx

= lim
t→∞

x−3

−3

∣∣∣∣
t

2

= lim
t→∞

(−1

3t3
− −1

3 · 23

)

= lim
t→∞

(
1

24
− 1

3t3

)
=

1

24
− 0 =

1

24

Note that as t → ∞, t3 → ∞ as well, so
1

3t3
→ 0. !

2. Do any two of parts a-d. [24 = 2 × 12 each]

a. Compute
d

dx

(∫ cos(x)

1

arccos(t)dt

)
.

Solution. Let y =
∫ cos(x)

1
arccos(t)dt and u = cos(x). Then, using the Chain Rule, the

Fundamental Theorem of Calculus, and the fact that arccos (cos(x)) = x:

d

dx

(∫ cos(x)

1

arccos(t)dt

)
=

dy

dx
=

dy

du
· du

dx
=

d

du

(∫ u

1

arccos(t)dt

)
· du

dx

= arccos(u) · du

dx
= arccos (cos(x)) · d

dx
cos(x)

= x (− sin(x)) = −x sin(x) !

2
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b. Give both a description and a sketch of the region whose area is computed by the

integral

1∫

−1

√
1 − x2 dx.

Solution. Note that if y =
√

1 − x2, then y2 = 1 − x2, so x2 + y2 = 1. Since y =√
1 − x2 ≥ 0 for −1 ≤ x ≤ 1, it follows that the region in question is the one bounded

above by the upper unit semicircle, i.e. y =
√

1 − x2, and below by the x-axis, i.e. y = 0,
for −1 ≤ x ≤ 1.

Here’s a sketch:

!

c. Find the area of the region bounded by y = x3 − x and y = 3x.

Solution. We first need to determine where y = x3 − x and y = 3x intersect. Setting
x3 − x = 3x, which amounts to x3 = 4x, we see that x = 0 must be one solution. The
solutions with x %= 0 are given by x2 = 4, i.e. x = −2 and x = 2.

We now need to determine when one curve is above the other, which we do by testing
points between the points where the two are equal. Note that −2 < −1 < 0 and 0 < 1 < 2.
Plugging in x = −1 into both equations gives y = (−1)3 − (−1) = 0 and y = 3(−1) = −3,
so between x = −2 and x = 0, y = x3 − x is above y = 3x. Plugging in x = 1 into both
equations gives y = 13 − 1 = 0 and y = 3 · 1 = 3, so between x = 0 and x = 2, y = 3x is
above y = x3 − x.

It follows that the area in question is given by:

∫ 0

−2

((
x3 − x

)
− 3x

)
dx +

∫ 2

0

(
3x −

(
x3 − x

))
dx

=

∫ 0

−2

(
x3 − 4x

)
dx +

∫ 2

0

(
4x − x3

)
dx

=

(
1

4
x4 − 4

2
x2

)∣∣∣∣
0

−2

+

(
4

2
x2 − 1

4
x4

)∣∣∣∣
2

0

=

(
1

4
· 04 − 2 · 02

)
−

(
1

4
· (−2)4 − 2 · 22

)
+

(
2 · 22 − 1

4
· 24

)
−

(
2 · 02 − 1

4
04

)

=(0 − 0) − (4 − 8) + (8 − 4) − (0 − 0) = 8 !

3
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d. Compute

∫ 1

0

(x + 1)dx using the Right-hand Rule.

Solution. The general Right-hand Rule formula is:

∫ b

a

f(x)dx = lim
n→∞

n∑

i=1

f

(
a + i

b − a

n

)
· b − a

n

Plugging in a = 0, b = 1, and f(x) = x + 1 gives:

∫ 1

0

(x + 1)dx = lim
n→∞

n∑

i=1

[(
0 + i

1 − 0

n

)
+ 1

]
· 1 − 0

n
= lim

n→∞
1

n

n∑

i=1

[
i
1

n
+ 1

]

= lim
n→∞

1

n

[(
n∑

i=1

i

n

)
+

(
n∑

i=1

1

)]
= lim

n→∞
1

n

[(
1

n

n∑

i=1

i

)
+ n

]

= lim
n→∞

1

n

[
1

n
· n(n + 1)

2
+ n

]
= lim

n→∞
1

n

[
n + 1

2
+ n

]

= lim
n→∞

1

n

[
3

2
n +

1

2

]
= lim

n→∞

[
3

2
+

1

2n

]
=

3

2
+ 0 =

3

2

This computation uses the facts that
n∑

i=1

i =
n(n + 1)

2
and

n∑

i=1

1 = n along the way. !

3. Consider the solid obtained by rotating the region bounded by y = x2 and y = 1
about the line x = 2.

a. Sketch the solid. [5]

Solution.

!

b. Find the volume of the solid. [20]

Solution. We will use the method of cylindrical shells to compute the volume of the given
solid of revolution. Since we rotated about a vertical line, we need to use x as the variable.

4
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Here is the sketch for part a with a cylindrical shell drawn in:

It is easy to see from this diagram that for the cylindrical shell at x, the radius is
r = 2 − x and the height is h = 1 − x2.

The volume of the solid is now computed as follows:

∫ 1

−1

2πrh dx =

∫ 1

−1

2π(2 − x)
(
1 − x2

)
dx = 2π

∫ 1

−1

(
2 − x − 2x2 + x3

)
dx

= 2π

(
2x − 1

2
x2 − 2

3
x3 +

1

4
x4

)∣∣∣∣
1

−1

= 2π

(
2 · 1 − 1

2
· 12 − 2

3
· 13 +

1

4
· 14

)

− 2π

(
2(−1) − 1

2
(−1)2 − 2

3
(−1)3 +

1

4
(−1)4

)

= 2π

(
2 − 1

2
− 2

3
+

1

4

)
− 2π

(
−2 − 1

2
+

2

3
+

1

4

)

= · · · =
16π

3
!

4. Find the arc-length of the curve given by the parametric equations x =
t2√
2

and

y =
t3

3
, where 0 ≤ t ≤ 1. [15]

Solution. Note that
dx

dt
=

2t√
2

=
√

2t and
dy

dt
=

3t2

3
= t2. The arc-length is then:

∫ 1

0

ds =

∫ 1

0

√(
dx

dt

)2

+

(
dy

dt

)2

dt =

∫ 1

0

√(√
2t

)2

+ (t2)
2
dt

=

∫ 1

0

√
2t2 + t4 dt =

∫ 1

0

√
t2 (2 + t2) dt =

∫ 1

0

t
√

2 + t2 dt

5
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We use the substitution u = 2 + t2, so du = 2t dt and 1
2 du = t dt. Also, u = 2 when t = 0

and u = 3 when t = 1.

=

∫ 3

2

1

2

√
u du =

1

2
· 2

3
u3/2

∣∣∣∣
3

2

=
1

3
· 33/2 − 1

3
· 23/2

=
1

3
· 3

√
3 − 1

3
· 2

√
2 =

√
3 − 2

3

√
2 !

[Total = 100]

6
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Mathematics 110 – Calculus of one variable
Trent University 2003-2004

Solutions to §A Quizzes

Quiz #1. Friday, 19 September, 2002. [10 minutes]

12:00 Seminar

1. How close does x have to be to 1 in order to guarantee that 1
x

is within 1
10

of 1? [10]

Solution. We’ll reverse-engineer the “how close” (i.e. the δ) from the tolerance (i.e. the
ε) we want to ensure.

1

x
is within

1

10
of 1

⇐⇒ − 1

10
<

1

x
− 1 <

1

10

⇐⇒ 1 − 1

10
<

1

x
< 1 +

1

10

⇐⇒ 9

10
<

1

x
<

11

10

⇐⇒ 10

9
> x >

10

11

⇐⇒ 10

9
− 1 > x − 1 >

10

11
− 1

⇐⇒ 1

9
> x − 1 > − 1

11

⇐=
1

11
> x − 1 > − 1

11
since

1

11
<

1

9

Thus x ought to be within 1
11 of 1 in order to guarantee that 1

x is within 1
10 of 1. !

13:00 Seminar

1. Find a value of δ > 0 that ensures that −1 <
√

x − 4 < 1 whenever −δ < x − 16 < δ.
[10]

Solution. As usual, we reverse-engineer the δ from the ε, which in this case has the value
1.

− 1 <
√

x − 4 < 1

⇐⇒ 4 − 1 <
√

x < 4 + 1

⇐⇒ 3 < sqrtx < 5

⇐⇒ 9 < x < 25

⇐⇒ 9 − 16 < x − 16 < 25 − 16

⇐⇒ − 7 < x − 16 < 9

⇐= − 7 < x − 16 < 9 since 7 < 9

1
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Thus δ = 7 will ensure that −1 <
√

x − 4 < 1 whenever −δ < x − 16 < δ. !
Leftovers

1. Use the ε − δ definition of limits to verify that that lim
x→0

1 = 1.

Hint: Try any δ > 0 you like . . .

Solution. There’s not much to reverse-enginner here. Observe that for any ε > 0
whatsoever we have

−ε < 1 − 1 < ε

for the very simple reason that 1 − 1 = 0. This is entirely indepependent of the value of
x, so we get −ε < 1 − 1 < ε whenever −δ < x − 0 < δ no matter what value of δ > 0 we
try . . . Hence, by the ε − δ definition of limit, lim

x→0
1 = 1. !

Quiz #2. Monday, 29 September, 2002. [10 minutes]

1. Use the ε − δ definition of limits to verify that that lim
x→0

sin2(x) = 0.

Hint: You may use the fact that | sin(x)| ≤ |x|.
Solution. As usual, we reverse-engineer the δ from the ε.

− ε < sin2(x) − 0 < ε

⇐⇒ − ε < [sin(x)]
2

< ε

⇐⇒ − √
ε < sin(x) <

√
ε

⇐⇒ |sin(x)| <
√

ε

⇐= |sin(x)| ≤ |x| <
√

ε

⇐= |x − 0| <
√

ε

It follows that δ =
√

ε will do the job, and hence that lim
x→0

sin2(x) = 0. !

Quiz #3. Friday, 3 October, 2003. [15 minutes]

12:00 Seminar

Evaluate

1. lim
x→∞

x − 2

x2 − 3x + 2
[5] 2. lim

x→0

ex − 1

e2x − 1
[5]

Solutions.

1.

lim
x→∞

x − 2

x2 − 3x + 2
= lim

x→∞
x − 2

(x − 2)(x − 1)
= lim

x→∞
1

x − 1
= 0

since lim
x→∞

(x − 1) = ∞. !
2.

lim
x→0

ex − 1

e2x − 1
= lim

x→0

ex − 1

(ex)
2 − 1

= lim
x→0

ex − 1

(ex − 1) (ex + 1)
= lim

x→0

1

ex + 1
=

1

1 + 1
=

1

2

since lim
x→0

ex = e0 = 1. !

2
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13:00 Seminar

Evaluate

1. lim
x→1

x2 + x − 2

x2 + 2x − 3
[5] 2. lim

x→∞
(x + 4)2

41x2 + 43x + 47
[5]

Solutions.

1.

lim
x→1

x2 + x − 2

x2 + 2x − 3
= lim

x→1

(x − 1)(x + 2)

(x − 1)(x + 3)
= lim

x→1

x + 2

x + 3
=

1 + 2

1 + 3
=

3

4
!

2.

lim
x→∞

(x + 4)2

41x2 + 43x + 47
= lim

x→∞
x2 + 8x + 16

41x2 + 43x + 47
= lim

x→∞
x2 + 8x + 16

41x2 + 43x + 47
· 1/x2

1/x2

= lim
x→∞

1 + 8
x + 16

x2

41 + 43
x + 47

x2

=
1 + 0 + 0

1 + 0 + 0
= 1

since lim
x→∞

1
x = lim

x→∞
1
x2 = 0. !

Leftovers

1. For what value(s) of the constant c does lim
x→2

(cx + 3) = lim
t→∞

ct2 + 3 + c

t2 + 1
? [10] Solu-

tion. First, we’ll evaluate both limits:

lim
x→2

(cx + 3) = c · 2 + 3 = 2c + 3

and

lim
t→∞

ct2 + 3 + c

t2 + 1
= lim

t→∞
ct2 + 3 + c

t2 + 1
· 1/t2

1/t2
= lim

t→∞
c + 3

t + c
t2

1 + 1
t2

=
c + 0 + 0

1 + 0
= c

Second, setting them equal gives the linear equation 2c + 3 = c; solving this equation
for c gives c = −3. !

Quiz #4. Friday, 10 October, 2003. [10 minutes]

12:00 Seminar

1. Use the limit definition of the derivative to find f ′(0) if f(x) = (x + 1)3. [10]

Solution.

f ′(0) = lim
h→0

f(0 + h) − f(0)

h
= lim

h→0

(0 + h + 1)2 − (0 + 1)2

h
= lim

h→0

(h + 1)2 − 1

h

= lim
h→0

h2 + 2h + 1 − 1

h
= lim

h→0

h2 + 2h

h
= lim

h→0
(h + 2) = 0 + 2 = 2 !

3
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13:00 Seminar

1. Use the limit definition of the derivative to find f ′(x) if f(x) =
1

x
. [10]

Solution.

f ′(x) = lim
h→0

f(x + h) − f(x)

h
= lim

h→0

1
x+h

− 1
x

h
= lim

h→0

x−(x+h)
x(x+h)

h

= lim
h→0

−h

hx(x + h)
= lim

h→0

−1

x(x + h)
=

−1

x(x + 0)
=

−1

x2
!

Leftovers

1. Use the limit definition of the derivative to find f ′(x) if f(x) = x2 − 3x. [10]

Solution.

f ′(x) = lim
h→0

f(x + h) − f(x)

h
= lim

h→0

[
(x + h)2 − 3(x + h)

]
−

[
x2 − 3x

]

h

= lim
h→0

[
x2 + 2xh + h2 − 3x − 3h

]
−

[
x2 − 3x

]

h

= lim
h→0

x2 + 2xh + h2 − 3x − 3h − x2 + 3x

h

= lim
h→0

2xh + h2 − 3h

h
= lim

h→0
(2x + h − 3) = 2x + 0 − 3 = 2x − 3 !

Quiz #5. Friday, 17 October, 2003. [10 minutes]

12:00 Seminar

Find dy
dx in each of the following:

1. y = ln (sec(x) + tan(x)) [3] 2. exy = 2 [3] 3. y =
x2 + 4x + 4

x + 3
[4]

Solutions.

1.

dy

dx
=

d

dx
ln (sec(x) + tan(x))

=
1

sec(x) + tan(x)
· d

dx
(sec(x) + tan(x))

=
1

sec(x) + tan(x)
·
(

d

dx
sec(x) +

d

dx
tan(x)

)

=
1

sec(x) + tan(x)
·
(
sec(x) tan(x) + sec2(x)

)

=
sec(x) (tan(x) + sec(x))

sec(x) + tan(x)
= sec(x) !

4
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2.

exy = 2 ⇐⇒ xy = ln(2) ⇐⇒ y =
ln(2)

x
so

dy

dx
=

d

dx

(
ln(2)

x

)
= ln(2)

d

dx

(
1

x

)
= ln(2) · −1

x2
= − ln(2)

x2
!

3.

dy

dx
=

d

dx

(
x2 + 4x + 4

x + 3

)

=
d
dx

(
x2 + 4x + 4

)
· (x + 3) −

(
x2 + 4x + 4

)
· d

dx
(x + 3)

(x + 3)2

=
(2x + 4)(x + 3) −

(
x2 + 4x + 4

)
· 1

(x + 3)2

=
2x2 + 10x + 12 − x2 − 4x − 4

(x + 3)2

=
x2 + 6x + 8

(x + 3)2
=

(x + 2)(x + 4)

(x + 3)2
!

13:00 Seminar

Find dy
dx in each of the following:

1. y =
(
1 + x2

)
arctan(x) [3] 2. tan(x + y) = 1 [3] 3. y =

ex + 1

e2x − 1
[4]

Solutions.

1.
dy

dx
=

d

dx

[(
1 + x2

)
arctan(x)

]
=

d

dx

(
1 + x2

)
· arctan(x) +

(
1 + x2

)
· d

dx
arctan(x)

= 2x arctan(x) +
(
1 + x2

)
· 1

1 + x2
= 2x arctan(x) + 1 !

2. The hard way:

tan(x + y) = 1

=⇒ d

dx
tan(x + y) =

d

dx
1

=⇒ sec2(x + y) · d

dx
(x + y) = 0

=⇒ sec2(x + y) ·
(

d

dx
x +

d

dx
y

)
= 0

=⇒ sec2(x + y) ·
(

1 +
dy

dx

)
= 0

=⇒ 1 +
dy

dx
= 0 (since sec(t) $= 0 when defined)

=⇒ dy

dx
= −1

5
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. . . and the easy way:

tan(x + y) = 1 ⇐⇒ x + y = nπ +
π

4
for some integer n

⇐⇒ y = −x + nπ +
π

4
for some integer n

so
dy

dx
=

d

dx

(
−x + nπ +

π

4

)
= −1 + 0 = −1 !

3.

y =
ex + 1

e2x − 1
=

ex + 1

(ex)
2 − 1

=
ex + 1

(ex − 1) (ex + 1)
=

1

ex − 1

so

dy

dx
=

d

dx

(
1

ex − 1

)
=

−1

(ex − 1)
2 · d

dx
(ex − 1) =

−1

(ex − 1)
2 · ex =

−ex

(ex − 1)
2 !

Leftovers

Find dy
dx in each of the following:

1. y =
√

1 − e2x [3] 2. y =
tan(x)

cos(x)
[3] 3. ln(x + y) = x [4]

Solutions.

1.

dy

dx
=

d

dx

√
1 − e2x =

d

dx

(
1 − e2x

)1/2
=

1

2

(
1 − e2x

)−1/2 · d

dx

(
1 − e2x

)

=
1

2

(
1 − e2x

)−1/2 ·
(

0 − e2x · d

dx
(2x)

)
=

1

2

(
1 − e2x

)−1/2 ·
(
−2e2x

)

= −e2x
(
1 − e2x

)−1/2
=

−e2x

√
1 − e2x

!

2.

y =
tan(x)

cos(x)
= tan(x)

1

cos(x)
= tan(x) sec(x)

so

dy

dx
=

d

dx
(tan(x) sec(x)) =

(
d

dx
tan(x)

)
· sec(x) + tan(x) ·

(
d

dx
sec(x)

)

= sec2(x) sec(x) + tan(x) sec(x) tan(x) = sec(x)
(
sec2(x) + tan2(x)

)
!

6
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3. The hard way:

ln(x + y) = x =⇒ d

dx
ln(x + y) =

d

dx
x

=⇒ 1

x + y
· d

dx
(x + y) = 1

=⇒ 1

x + y
·
(

1 +
dy

dx

)
= 1

=⇒ 1 +
dy

dx
= x + y

=⇒ dy

dx
= x + y − 1

. . . and the easy way:

ln(x + y) = x ⇐⇒ x + y = ex ⇐⇒ y = ex − x

so
dy

dx
=

d

dx
(ex − x) = ex − 1 !

7
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Mathematics 110 – Calculus of one variable
Trent University, 2003-2004

§A Test #1 Solutions

1. Find
dy

dx
in any three of a-e. [12 = 3 × 4 ea.]

a. y = xln

(
1

x

)
b. x2 + 2xy + y2 − x = 1 c. y = sin

(
e
√

x
)

d. y =
2x

x + 1
e. y = cos(2t) where t = x3 + 2x

Solutions.

a. Product rule:
First, the direct approach.

dy

dx
=

d

dx
xln

(
1

x

)
=

1

1/x
· d

dx

1

x
= x · −1

x2
= − 1

x

Second, an alternative, slightly indirect, approach.

y = xln

(
1

x

)
= xln

(
x−1

)
= −xln(x)

so
dy

dx
=

d

dx
(−xln(x)) = − d

dx
ln(x) = − 1

x
!

b. The direct approach is to use implicit differentiation, plus the product and chain rules
along the way:

x2 + 2xy + y2 − x = 1 =⇒ d

dx

(
x2 + 2xy + y2 − x

)
=

d

dx
1

=⇒ d

dx
x2 +

d

dx
2xy +

d

dx
y2 − d

dx
x = 0 =⇒ 2x + 2y + 2x

dy

dx
+ 2y

dy

dx
− 1 = 0

=⇒(2x + 2y)
dy

dx
+ (2x + 2y − 1) = 0 =⇒ (2x + 2y)

dy

dx
= 1 − 2x − 2y

=⇒dy

dx
=

1 − 2x − 2y

2x + 2y
=

1

2x + 2y
− 1

An alternate approach is to solve for y first . . .

x2 + 2xy + y2 − x = 1 ⇐⇒ (x + y)2 − x = 1 ⇐⇒ (x + y)2 = 1 + x

⇐⇒ x + y = ±
√

1 + x ⇐⇒ y = −x ±
√

1 + x

1
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. . . and then take the derivative:

dy

dx
=

d

dx

(
−x ±

√
1 + x

)
= −1 ± 1

2
√

1 + x
!

c. Chain rule, twice:

dy

dx
=

d

dx
sin

(
e
√

x
)

= cos
(
e
√

x
)

· d

dx
e
√

x

= cos
(
e
√

x
)

e
√

x · d

dx

√
x = cos

(
e
√

x
)

e
√

x 1

2
√

x
!

d. Quotient rule:

dy

dx
=

d

dx

(
2x

x + 1

)
=

d
dx2x · (x + 1) − 2x · d

dx (x + 1)

(x + 1)2

=
ln(2)2x · (x + 1) − 2x · 1

(x + 1)2
=

2x (ln(2)(x + 1) − 1)

(x + 1)2
!

e. Chain rule:

dy

dx
=

dy

dt
· dt

dx
=

d

dt
cos(2t) · d

dx

(
x3 + 2x

)
= − sin(2t) · d

dt
2t ·

(
3x2 + 2

)

= −2 sin(2t) ·
(
3x2 + 2

)
= −2

(
3x2 + 2

)
sin

(
2
(
x3 + 2x

))

= −
(
6x2 + 4

)
sin

(
2x3 + 4x

)
!

2. Do any two of a-c. [10 = 2 × 5 each]

a. Determine whether g(x) =

{
x−1
x2−1

x $= 1

1
2 x = 1

is continuous at x = 1 or not.

Solution. g(x) is continuous at x = 1 if and only if lim
x→1

g(x) exists and equals g(1). Since

lim
x→1

g(x) = lim
x→1

x − 1

x2 − 1
= lim

x→1

x − 1

(x − 1)(x + 1)
= lim

x→1

1

x + 1
=

1

1 + 1
=

1

2
= g(1) ,

g(x) is continuous at x = 1. !

b. Use the definition of the derivative to compute f ′(1) for f(x) =
1

x
.

Solution. Plug in and run . . .

f ′(1) = lim
h→0

f(1 + h) − f(1)

h
= lim

h→0

1
1+h − 1

1

h
= lim

h→0

1−(1+h)
1+h

h

= lim
h→0

−h
1+h

h
= lim

h→0

−h

h(1 + h)
= lim

h→0

−1

1 + h
=

−1

1 + 0
= −1 !
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c. Find the equation of the tangent line to y =
√

x at x = 9.

Solution. Note that at x = 9, y =
√

9 = 3. The slope m of the tangent line is equal to
the derivative of y at x = 9.

m =
dy

dx

∣∣∣∣
x=9

=
d

dx

√
x

∣∣∣∣
x=9

=
1

2
√

x

∣∣∣∣
x=9

=
1

2
√

9
=

1

2 · 3
=

1

6

We want the equation y = mx + b of the line with slope m = 1
6 passing through the point

(9, 3), and it remains to compute the y-intercept, b. We do this by plugging in the slope
and the coordinates of the point into the equation of the line and solving for b:

3 =
1

6
· 9 + b ⇐⇒ 3 =

3

2
+ b ⇐⇒ b = 3 − 3

2
=

3

2

Thus the equation of the tangent line to y =
√

x at x = 9 is y = 1
6
x + 3

2
. !

3. Do one of a or b. [8]

a. Use the ε − δ definition of limits to verify that lim
x→2

x2 = 4.

Solution. We need to show that for every ε > 0, there is a δ > 0 such that if x is within
δ of 2, then x2 is within ε of 4. As usual, given ε, we try to reverse-engineer the necessary
δ:

−ε < x2 − 4 < ε ⇐⇒ −ε < (x − 2)(x + 2) < ε ⇐⇒ − ε

x + 2
< x − 2 <

ε

x + 2

Unfortunately, δ cannot depend on x, so we need to find a suitable bound for ε
x+2 . If we

arbitrarily decide to ensure that δ ≤ 1, then:

−δ < x − 2 < δ =⇒ −1 < x − 2 < 1 =⇒ 1 < x < 3 =⇒ 3 < x + 2 < 5

=⇒ 1

3
>

1

x + 2
>

1

5
=⇒ ε

3
>

ε

x + 2
>

ε

5

If we now let δ = min
(
1, ε

5

)
, this will do the job:

−δ < x − 2 < δ =⇒ − ε

5
< x − 2 <

ε

5
because δ ≤ ε

5

=⇒ − ε

x + 2
< x − 2 <

ε

x + 2

because −1 ≤ δ < x − 2 < δ ≤ 1 implies that
ε

5
<

ε

x + 2

=⇒ −ε < (x − 2)(x + 2) < ε

=⇒ −ε < x2 − 4 < ε . . . as desired!

Hence lim
x→2

x2 = 4. !
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b. Use the ε − N definition of limits to verify that lim
t→∞

1

t + 1
= 0.

Solution. We need to show that for every ε > 0, there is an N > 0 such that if x > N ,
then 1

t+1 is within ε of 0. Note that as t → ∞, we can assume that t > −1, from which

it follows that 1
t+1 − 0 > 0 > −ε. This means we only have to worry about making

1
t+1 − 0 < ε. As usual, given ε, we try to reverse-engineer the necessary N :

1

t + 1
− 0 < ε ⇐⇒ 1

t + 1
< ε ⇐⇒ t + 1 >

1

ε
⇐⇒ t >

1

ε
− 1

Since every step was reversible here, it follows that N =
1

ε
− 1 will do the job. Hence

lim
t→∞

1

t + 1
= 0. !

4. Find the intercepts, the maximum, minimum, and inflection points, and the vertical
and horizontal asymptotes of f(x) = xe−x2

and sketch the graph of f(x) based on
this information. [10]

Solution.

i. (Domain) Since x and e−x2

are defined and continuous for all x, it follows that f(x) =

xe−x2

is defined and continuous for all x.

ii. (Intercepts) f(x) = xe−x2

= 0 ⇐⇒ x = 0, because e−x2

> 0 for all x. Thus (0, 0) is
the only x-intercept and the only y-intercept of f(x).

iii. (Local maxima and minima)

f ′(x) =
d

dx

(
xe−x2

)
=

d

dx
x · e−x2

+ x · d

dx
e−x2

= 1 · e−x2

+ x · e−x2 · d

dx

(
−x2

)

= e−x2

+ x · e−x2 · (−2x) =
(
1 − 2x2

)
e−x2

which is also defined for all x.
Since e−x2

> 0 for all x,

f ′(x) = 0 ⇐⇒ 1 − 2x2 = 0 ⇐⇒ x2 =
1

2
⇐⇒ x = ± 1√

2
.

We determine which of these give local maxima or minima by considering the intervals

of increase and decrease. Note that since e−x2

> 0 for all x, f ′(x) is positive or negative
depending on whether 1 − 2x2 is positive or negative.

x x < − 1√
2

x = − 1√
2

− 1√
2

< x < 1√
2

x = 1√
2

1√
2

< x

f ′(x) < 0 0 > 0 0 < 0
f(x) decreasing local min increasing local max decreasing

Thus f
(
− 1√

2

)
= − 1√

2
e−1/2 and f

(
1√
2

)
= 1√

2
e−1/2 are, respectively, local minimum

and local maximum points of f(x).

4
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iv. (Points of inflection and curvature)

f ′′(x) =
d

dx
f ′(x) =

d

dx

[(
1 − 2x2

)
e−x2

]
=

d

dx

(
1 − 2x2

)
· e−x2

+
(
1 − 2x2

)
· d

dx
e−x2

= −4xe−x2

+
(
1 − 2x2

)
e−x2 d

dx

(
−x2

)
= −4xe−x2

+
(
1 − 2x2

)
e−x2

(−2x)

=
(
−4x − 2x + 4x3

)
e−x2

=
(
4x3 − 6x

)
e−x2

= 2x
(
2x2 − 3

)
e−x2

which is also defined for all x.

Since e−x2

> 0 for all x, f ′′(x) = 0 if x = 0 or x = ±
√

3
2 . To sort out the

inflection points and intervals of curvature, we check where f ′′(x) is positive and

where it is negative. Again, e−x2

> 0 for all x, so f ′′(x) is positive or negative
depending on whether 2x

(
2x2 − 3

)
is positive or negative

x x < −
√

3
2

x = −
√

3
2

−
√

3
2

< x < 0 x = 0 0 < x <
√

3
2

x =
√

3
2

x >
√

3
2

f ′′(x) < 0 0 > 0 0 < 0 0 > 0
f(x) conc. down infl. pt. conc. up infl. pt. conc. down infl. pt. conc. up

Thus f
(
−

√
3
2

)
= −

√
3
2e−3/2, f(0) = 0, and f

(√
3
2

)
=

√
3
2e−3/2 are the inflection

points of f(x).

v. (Vertical asymptotes) f(x) has no vertical asymptotes because it is defined and con-
tinuous for all x.

vi. (Horizontal asymptotes) f(x) = xe−x2

= x

ex2 and, since x → ±∞ and ex2 → infty as
x → ±∞, we can use l’Hôpital’s Rule in the relevant limits.

lim
x→+∞

x

ex2 = lim
x→+∞

1

2xex2 = 0

lim
x→−∞

x

ex2 = lim
x→−∞

1

2xex2 = 0

Thus f(x) has a horizontal asymptote at y = 0 in both directions.

vii. (The graph!) Typing plot(x*exp(-x*x),x=-5..5); into Maple gives:

Whew! !
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Mathematics 110 – Calculus of one variable
Trent University, 2003-2004

§A Test #2 Solutions

1. Compute any three of the integrals in parts a-f. [12 = 3 × 4 each]

a.

∫ π/2

0

cos3(x)dx b.

∫
1

x2 + 3x + 2
dx c.

∫ ∞

2

1√
x

dx

d.

∫
arctan(x)

x2 + 1
dx e.

∫
ln

(
x2

)
dx f.

∫ 2

1

1

x2 − 2x + 2
dx

Solutions.

a. Trig identity followed by a substitution:

∫ π/2

0

cos3(x)dx =

∫ π/2

0

cos2(x) cos(x)dx =

∫ π/2

0

(
1 − sin2(x)

)
cos(x)dx

Letting u = sin(x), we get du = cos(x)dx; note that

u = 0 when x = 0 and u = 1 when x = π/2.

=

∫ 1

0

(
1 − u2

)
du =

(
u − 1

3
u3

)∣∣∣∣
1

0

=

(
1 − 1

3
13

)
−

(
0 − 1

3
03

)
=

2

3
!

b. Partial fractions:
∫

1

x2 + 3x + 2
dx =

∫
1

(x + 1)(x + 2)
dx =

∫ (
A

x + 1
+

B

x + 2

)
dx

We need to determine A and B:

1

(x + 1)(x + 2)
=

A

x + 1
+

B

x + 2
=

A(x + 2) + B(x + 1)

(x + 1)(x + 2)
=

(A + B)x + (2A + B)

(x + 1)(x + 2)

Comparing coefficients in the numerators, it follows that A + B = 0 and 2A + B = 1.
Subtracting the first equation from the second gives A = (2A + B) − (A +B) = 1 − 0 = 1;
substituting this back into the first equation gives 1 + B = 0, so B = −1. We can now
return to our integral:

∫
1

x2 + 3x + 2
dx =

∫
1

(x + 1)(x + 2)
dx =

∫ (
1

x + 1
+

−1

x + 2

)
dx

=

∫
1

x + 1
dx −

∫
1

x + 2
dx = ln(x + 1) − ln(x + 2) + C

= ln

(
x + 1

x + 2

)
+ C !
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c. Improper integral:

∫ ∞

2

1√
x

dx = lim
t→∞

∫ t

2

1√
x

dx = lim
t→∞

∫ t

2

x1/2 dx

= lim
t→∞

x3/2

3/2

∣∣∣∣
t

2

= lim
t→∞

(
2

3
t3/2 − 2

3
23/2

)
= ∞

. . . because t3/2 > t and t → ∞. Hence this improper integral does not converge. !
d. Substitution:

∫
arctan(x)

x2 + 1
dx =

∫
u du where u = arctan(x) and du =

1

x2 + 1
dx

=
1

2
u2 + C =

1

2
arctan2(x) + C !

e. Integration by parts:

∫
ln

(
x2

)
dx =

∫
2ln(x)dx Let u = ln(x) and v′ = 2, so u′ =

1

x
and v = 2x.

= ln(x) · 2x −
∫

1

x
· 2xdx = 2xln(x) −

∫
2 dx = 2xln(x) − 2x + C !

f. Completing the square and substitution:

∫ 2

1

1

x2 − 2x + 2
dx =

∫ 2

1

1

(x2 − 2x + 1) + 1
dx =

∫ 2

1

1

(x − 1)2 + 1
dx

Let u = x − 1, then du = dx; note that u = 0 when x = 1

and u = 1 when x = 2.

=

∫ 1

0

1

u2 + 1
du = arctan(u)|10

= arctan(1) − arctan(0) =
π

4
− 0 =

π

4

Note that arctan(1) = π
4 and arctan(0) = 0 because tan

(
π
4

)
= 1 and tan(0) = 0. !

2. Do any two of parts a-d. [8 = 2 × 4 each]

a. Find a definite integral computed by the Right-hand Rule sum

lim
n→∞

n∑

i=0

(
1 +

i2

n2

)
· 1

n
.

[The sum should have been
n∑

i=1

· · · instead of
n∑

i=0

· · · . Darn typo!]
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Solution. The general Right-hand Rule formula is:

∫ b

a

f(x)dx = lim
n→∞

n∑

i=1

f

(
a + i

b − a

n

)
· b − a

n

Comparing the general sum above to the given one reveals that f
(
a + b−a

n

)
= 1 + i2

n2 and
b−a
n = 1

n . It follows from the latter that b − a = 1. If we arbitrarily choose a = 0, it will

follow that b = 1 and f
(
a + i b−a

n

)
= f

(
0 + i

n

)
= f

(
i
n

)
. It follows that f

(
i
n

)
= 1 + i2

n2 =

1 +
(

i
n

)2
, that is, f(x) = 1 + x2.

Plugging all this into the integral side of the Right-hand Rule formula, we see that:

lim
n→∞

n∑

i=1

(
1 +

i2

n2

)
· 1

n
=

∫ 1

0

(
1 + x2

)
dx

It is worth noting that we could have chosen a to be any real number. This would, of
course, result in a different value of b (since b − a = 1) and a different function f(x). !

b. Compute
d

dx

(∫ tan(x)

0

e
√

t dt

)
.

Solution. This is a job for the Fundamental Theorem of Calculus and the Chain Rule:

d

dx

(∫ tan(x)

0

e
√

t dt

)
=

d

dx

(∫ u

0

e
√

t dt

)
where u = tan(x)

=
d

du

(∫ u

0

e
√

t dt

)
· du

dx
by the Chain Rule

= e
√

u · du

dx
by the Fundamental Theorem

= e
√

tan(x) · d

dx
tan(x)

= e
√

tan(x) · sec2(x)

If you can simplify this one significantly, you’re doing better than I! !
c. Find the area under the parametric curve given by x = 1 + t2 and y = t(1 − t) for

0 ≤ t ≤ 1.

Solution. Note that dx = 2t dt and that y = t(1 − t) ≥ 0 for 0 ≤ t ≤ 1.

Area =

∫ t=1

t=0

y dx =

∫ 1

0

t(1 − t)2t dt = 2

∫ t

0

(
t2 − t3

)
dt

= 2

(
1

3
t3 − 1

4
t4

)∣∣∣∣
1

0

= 2

(
1

3
13 − 1

4
14

)
− 2

(
1

3
03 − 1

4
04

)
= 2

1

12
=

1

6
!
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d. Sketch the region whose area is computed by the integral

∫ 1

0

arctan(x)dx.

Solution. Note that arctan(x) ≥ 0 for x ≥ 0, arctan(0) = 0, and arctan(1) =
π

4
.

One does need to know what the graph of arctan(x) looks like; the one above was
generated using the Maple command plot(arctan(x),x=-5..5); (with some additions
made in a drawing program). !

3. Find the volume of the solid obtained by rotating the region bounded by y =
1

x
,

y =
1

2
, and x = 1 about the line x = −1. [10]

Solution. Here’s a crude sketch of the solid in question:

Note the region that was rotated includes x values from 1 to 2.
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We will tackle this problem using shells rather than washers, not that there is much
difference in difficulty between the two methods. Since the axis of revolution is a vertical
line, the shells are upright and we will need to integrate with respect to the horizontal
coordinate axis, namely x. Here is a sketch of the cylindrical shell at x:

It is not hard to see that this shell has radius r = x − (−1) = x +1 and height h =
1

x
− 1

2
,

and hence area 2πrh = 2π(x + 1)

(
1

x
− 1

2

)
.

Thus

Volume =

∫ 2

1

2πrh dx =

∫ 2

1

2π(x + 1)

(
1

x
− 1

2

)
dx = 2π

∫ 2

1

(
1 − x

2
+

1

x
− 1

2

)
dx

= 2π

∫ 2

1

(
1

2
− x

2
+

1

x

)
dx = 2π

(
x

2
− x2

4
+ ln(x)

)∣∣∣∣
2

1

= 2π

(
2

2
− 22

4
+ ln(2)

)
− 2π

(
1

2
− 12

4
+ ln(1)

)
= 2π

(
ln(2) − 1

4

)
!

4. Find the area of the surface obtained by rotating the curve y = ln(x), 0 < x ≤ 1,
about the y-axis. [10]

Solution. Here’s a crude sketch of the surface:
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A slightly nasty feature of this problem is that one must use an improper integral to
compute the surface area because ln(x) has an asymptote at x = 0. (Even nastier is the
fact that if one does not notice that this requires an improper integral and proceeds blindly
using x as the independent variable, one is likely to get the right answer but still lose some
marks . . . ) It should not be too hard to see that the radius of the surface corresponding

to the point (x, y) on the curve is just r = x − 0 = x. Note that
dy

dx
=

d

dx
ln(x) =

1

x
.

A =

∫ 1

0

2πr

√
1 +

(
dy

dx

)2

dx = 2π

∫ 1

0

x

√
1 +

(
1

x

)2

dx = 2π

∫ 1

0

x

√
1 +

1

x2
dx

Note that this last is an improper integral.

= lim
t→0+

2π

∫ 1

t

x

√
1 +

1

x2
dx = lim

t→0+
2π

∫ 1

t

√
x2

(
1 +

1

x2

)
dx = lim

t→0+
2π

∫ 1

t

√
x2 + 1 dx

This is a job for a trig substitution, namely x = tan(θ). Then dx = sec2(θ)dθ;

we’ll keep the old limits and substitute back eventually.

= lim
t→0+

2π

∫ x=1

x=t

√
tan2(θ) + 1 · sec2(θ)dθ = lim

t→0+
2π

∫ x=1

x=t

√
sec2(θ) · sec2(θ)dθ

= lim
t→0+

2π

∫ x=1

x=t

sec(θ) · sec2(θ)dθ = lim
t→0+

2π

∫ x=1

x=t

sec3(θ)dθ

This is an integral we’ve seen several times over, so we’ll just cut to the chase:

= lim
t→0+

2π · 1

2
(tan(θ) sec(θ) + ln |tan(θ) + sec(θ)|)|x=1

x=t

= lim
t→0+

π
(
x
√

x2 + 1 + ln
∣∣∣x +

√
x2 + 1

∣∣∣
)∣∣∣

1

t

= lim
t→0+

[
π

(
1
√

12 + 1 + ln
∣∣∣1 +

√
12 + 1

∣∣∣
)

− π
(
t
√

t2 + 1 + ln
∣∣∣t +

√
t2 + 1

∣∣∣
)]

= lim
t→0+

[
π

(√
2 + ln

(
1 +

√
2
))

− π
(
t
√

t2 + 1 + ln
∣∣∣t +

√
t2 + 1

∣∣∣
)]

= π
(√

2 + ln
(
1 +

√
2
))

. . . because t
√

t2 + 1 → 0 as t → 0 and t +
√

t2 + 1 → 1, so ln
∣∣t +

√
t2 + 1

∣∣ → ln(1) = 0
as t → 0. !
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Mathematics 105H – Applied calculus
Trent University, Summer 2008

Quiz Solutions

Quiz #1. Thursday, 1 May, 2008 [10 minutes]

1. Find the equation of the line between (1, 3) and (5,−1). [2]

2. Find the equation of the line through (2, 2) perpendicular to the line in part 1. [2]

3. Sketch a graph of the lines in parts 1 and 2. [1]

Solutions:

1. The line between (1, 3) and (5,−1) has slope

m =
rise

run
=

−1 − 3

5 − 1
=

−4

4
= −1 .

To find the y-intercept, we plug the coordinates of one of the points, say (1, 3), into
y = mx + b = (−1)x + b and solve for b:

3 = (−1) · 1 + b =⇒ −1 + b = 3 =⇒ b = 4

Thus the equation of the line between (1, 3) and (5,−1) is y = −x + 4. !
2. The line through (2, 2) perpendicular to the line y = −x + 4 must have as its slope

the negative reciprocal of the slope of y = −x + 4:

m = − 1

−1
− −(−1) = 1

To find the y-intercept, we plug (2, 2) into y = mx + b = x + b and solve for b:

2 = 1 · 2 + b =⇒ b = 2 − 2 = 0

Thus the equation of the line is y = x. !
3. A sketch:

!

1
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Quiz #2. Tuesday, 6 May, 2008 [10 minutes]

1. Find the x- and y-intercepts (if any), and the domain and range, of f(x) = 1− 1
x , and

give a rough sketch of its graph. [5]

Solution: (The overkill edition!) The y-intercept of a function occurs when x = 0, but
f(x) = 1 − 1

x is not defined for x = 0. (Since we’d be dividing by 0 in 1
x . . . ) Hence f(x)

has no y-intercept.
The x-intercept of a function occurs when y = 0, so we need to solve the equation

y = f(x) = 1 − 1
x = 0:

1 − 1

x
= 0 =⇒ 1 =

1

x
=⇒ x = 1

(Check: f(1) = 1 − 1
1 = 1 − 1 = 0.) Hence f(x) has one x-intercept, at x = 1.

The expression 1 − 1
x makes sense for all x except, as previously noted, for x = 0.

Hence the domain of f(x) is the set of all real numbers other than 0, i.e. {x ∈ R | x $= 0 }.
Since 1

x $= 0 for all x $= 0 (because if 1
x = 0, then multiplying both sides by x would

give 1 = x · 0 = 0, which ain’t so), y = f(x) = 1− 1
x $= 1− 0 = 1 for all x $= 0. Hence y = 1

is not in the range of f(x). On the other hand, every y $= 1 is in the range of f(x), since
we can then solve the equation y = f(x) = 1 − 1

x for x:

y = 1 − 1

x
=⇒ 1

x
= 1 − y =⇒ 1 = x(1 − y) =⇒ x =

1

1 − y

(Note that the last makes sense whenever y $= 1.) Hence the range of f(x) is the set of all
real numbers other than 1, i.e. { y ∈ R | y $= 1 }.

To sketch the graph, note first that 1
x < 0 when x < 0 and that 1

x > 0 when x > 0. It
follows that 1 − 1

x > 1 when x < 0 and that 1 − 1
x < 1 when x > 0.

Note also that as x gets very large (in absolute value), 1
x gets very close to 0. Combin-

ing this with the previous observation, we can see that as x gets very large in the negative
direction, f(x) = 1− 1

x gets close to 1 from above, while as x gets very large in the positive
direction, y = f(x) = 1 − 1

x gets close to 1 from below.
Finally, note that as x gets very close to 0 from the negative direction, 1

x shoots off to
−∞, and so y = f(x) = 1 − 1

x
shoots up to +∞. Similalrly, as x gets very close to 0 from

the positive direction, 1
x shoots off to +∞, and so y = f(x) = 1 − 1

x shoots up to −∞.
Here’s the (rough!) sketch:

!
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Quiz #3. Thursday, 8 May, 2008 [10 minutes]

Using the fact that loga(u) = t really means that at = u and the properties of
exponents, explain why each of the following equations works:

1. log2(1) = 0 [1]

2. log2 (log3(81)) = 2 [2]

3. log2(41) = log1/2

(
1
41

)
[2]

Solutions:

1. a0 = 1 if a is any valid base, i.e. a > 0 and a != 1. In particular, 20 = 1, which is
what log2(1) = 0 really means. !

2. First, note that log3(81) = 4 since 81 = 92 = 34. Second, we have that log2(4) = 2
since 22 = 4. Hence log2 (log3(81)) = log2(4) = 2. !

3. First, note that log2(41) = r really means that r is the number such that 2r = 41.
Second, it follows from this that 1

41 = 1
2r =

(
1
2

)r
, which is what log1/2

(
1
41

)
= r really

means. Hence log2(41) = r = log1/2

(
1
41

)
. !

3
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Quiz #4. Tuesday, 13 May, 2008 [10 minutes]

Do one of problems 1 and 2.

1. Use the limit definition of the derivative to compute f ′(2) for f(x) = x2 +2x−3. [10]

2. Use the limit rules to compute lim
x→−∞

x22x

(3 − x)2
. [10]

Solutions:

1. By definition f ′(a) = lim
h→0

f(a+h)−f(a)
h . In this case a = 2, so:

f ′(2) = lim
h→0

f(2 + h) − f(2)

h

= lim
h→0

(
(2 + h)2 + 2(2 + h) − 3

)
−

(
22 + 2 · 2 − 3

)

h

= lim
h→0

(
22 + 2h + h2 + 4 + 2h − 3

)
− (4 + 4 − 3)

h

= lim
h→0

(
5 + 4h + h2

)
− 5

h

= lim
h→0

4h + h2

h
= lim

h→0
(4 + h) = 4 + 0 = 4 !

2. Here goes serious overkill!

lim
x→−∞

x22x

(3 − x)2
= lim

x→−∞

(
x2

(3 − x)2

)
(2x) =

(
lim

x→−∞
x2

(3 − x)2

) (
lim

x→−∞
2x

)

=

(
lim

x→−∞
x2

9 − 6x + x2

)
· 0 =

(
lim

x→−∞
x2

9 − 6x + x2
·

1
x2

1
x2

)
· 0

=

(
lim

x→−∞

x2

x2

9
x2 − 6x

x2 + x2

x2

)
· 0 =

(
lim

x→−∞
1

9
x2 − 6

x + 1

)
· 0

=

(
limx→−∞ 1

limx→−∞
(

9
x2 − 6

x + 1
)
)

· 0

=

(
1(

limx→−∞ 9
x2

)
−

(
limx→−∞ 6

x

)
+ (limx→−∞ 1)

)
· 0

=

(
1

0 − 0 + 1

)
· 0 = 1 · 0 = 0

Note that lim
x→−∞

2x = 0 since 2 > 1. Why do we have to evaluate lim
x→−∞

x2

9−6x+x2 even

though it will be multiplied by 0? !

4
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Quiz #5. Thursday, 15 May, 2008 [10 minutes]

Do any two of problems 1–3.

1. Use the limit definition of the derivative to compute f ′(x) for f(x) = 1
x . [5]

2. Compute f ′(1) if f(x) = exln
(
x7

)
. [5]

3. Find the point(s) on the graph of y = x3 − x where the graph has slope 0. [5]

Solutions:

1. Note that we must have x "= 0 for f(x) to be defined.

f ′(x) = lim
h→0

f(x + h) − f(x)

h
= lim

h→0

1
x+h − 1

x

h
= lim

h→0

x−(x+h)
x(x+h)

h
= lim

h→0

x − x − h

hx(x + h)

= lim
h→0

−h

hx(x + h)
= lim

h→0

−1

x(x + h)
=

−1

x(x + 0)
=

−1

x2
!

2. We’ll use the basic derivatives and derivative rules done in class. Note that f(x) =
exln

(
x7

)
= 7exln(x).

f ′(x) =
d

dx
f(x) =

d

dx
(7exln(x)) = 7

d

dx
(exln(x))

= 7

([
d

dx
ex

]
ln(x) + ex

[
d

dx
ln(x)

])

= 7

(
exln(x) + ex 1

x

)
= 7ex

(
ln(x) +

1

x

)

It follows that f ′(1) = 7e1
(
ln(1) + 1

1

)
= 7e(0 + 1) = 7e. !

3. The slope of the graph of y = x3 − 3x at x is given by

dy

dx
=

d

dx

(
x3 − 3x

)
=

(
d

dx
x3

)
− 3

(
d

dx
x

)
= 3x2 − 3 · 1 = 3

(
x2 − 1

)
.

The slope of the graph is therefore 0 when

3
(
x2 − 1

)
= 0 ⇐⇒ x2 − 1 = 0 ⇐⇒ x2 = 1 ⇐⇒ x = ±1 .

To find the points we also need their y-coordinates, which we can get by plugging
x = ±1 into y = x3 − 3x: when x = 1, y = 13 − 3 · 1 = −2, and when x = −1,
y = (−1)3 − 3(−1) = −1 + 3 = 2. Thus the points on the graph of y = x3 − 3x where
the slope of the graph is 0 are (1,−2) and (−1, 2). !

5

154



Quiz #6. Thursday, 22 May, 2008 [10 minutes]

1. Find the coordinates of the point(s), if any, on the graph of y = x3 − 9x where the
graph has slope 3. [5]

Solution. We are looking for the points where dy
dx = 3. First:

dy

dx
=

d

dx

(
x3 − 9x

)
=

d

dx

(
x3

)
− d

dx
(9x) = 3x2 − 9

Second:

dy

dx
= 3 ⇐⇒ 3x2 − 9 = 3 ⇐⇒ x2 − 3 = 1 ⇐⇒ x2 = 4 ⇐⇒ x = ±2

Finally, we still need the y values corresponding to x = ±3. When x = 2, y = 23 − 9 · 2 =
8 − 18 = −10, and when x = −2, y = (−2)3 − 9 · (−2) = −8 − (−18) = −8 + 18 = 10.
Thus the coordinates of the points on the graph of y = x3 − 9x where the graph has slope
3 are (−2, 10) and (2,−10). !

6
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Quiz #7. Tuesday, 27 May, 2008 [10 minutes]

1. Find the domain and all the intercepts, vertical and horizontal asymptotes, and local

minimum and maximum points of y =
x

1 + x2
, and sketch the graph of this function.

[5]

Solution. Here goes!

Domain: y =
x

1 + x2
is defined everywhere, except where the denominator is equal to zero.

However, since 1 + x2 ≥ 1.0 for all x, the denominator is never zero, and so the function
is defined for all real values of x.

Intercepts: If x = 0, then y = 0
1+02 = 0

1 = 0, so the y-intercept is (0, 0). On the other
hand, if y = x

1+x2 = 0, we must have x = 0, so (0, 0) is also the (only) x-intercept.

Asymptotes: Since y =
x

1 + x2
is a rational function, it is continuous everywhere it is

defined, which is everywhere. It follows that there are no vertical asymptotes.
We check for horizontal asymptotes:

lim
x→∞

x

1 + x2
= lim

x→∞
x

1 + x2
·

1
x
1
x

= lim
x→∞

x
x

1
x + x2

x

= lim
x→∞

1
1
x + x

=
1

0 + ∞ = 0+

lim
x→−∞

x

1 + x2
= lim

x→−∞
x

1 + x2
·

1
x
1
x

= lim
x→−∞

x
x

1
x + x2

x

= lim
x→−∞

1
1
x

+ x
=

1

0 − ∞ = 0−

It follows that y = 0 is a horizontal asymtote in both directions, approached from above
as x → ∞ and from below as x → −∞.

Local extrema: Using the Quotient Rule:

dy

dx
=

d

dx

(
x

1 + x2

)
=

(
d

dxx
)

·
(
1 + x2

)
− x · d

dx

(
1 + x2

)

(1 + x2)
2

=
1 ·

(
1 + x2

)
− x · 2x

(1 + x2)
2 =

1 − x2

(1 + x2)
2

Note that
(
1 + x2

)2 ≥ 12 = 1 > 0 for all x, so dy
dx is < 0, = 0, or > 0 according to whether

the numerator, 1 − x2, is < 0, = 0, or > 0:

1 − x2 < 0 =⇒ 1 < x2 =⇒ |x| > 1 =⇒ x < −1 or x > 1

1 − x2 = 0 =⇒ x2 = 1 =⇒ x = ±1

1 − x2 > 0 =⇒ 1 > x2 =⇒ |x| < 1 =⇒ −1 < x < 1

When x = −1, y = −1
1+(−1)2 = − 1

2 , and when x = 1, y = 1
1+12 = 1

2 , so the critical points

are
(
−1, 1 1

2

)
and

(
1, 1

2

)
. Since dy

dx < 0 when x < −1 and > 0 when −1 < x < 1,
(
−1, 1 1

2

)

is a local minimum point. Similarly, since dy
dx > 0 when −1 < x < 1 and < 0 when x > 1,(

−1, 1 1
2

)
is a local maximum point.

7

156



The graph: A couple of small observations that can be used as sanity checks first. Note
that becaose 1 + x2 ≥ 1 > 0 for all x, y = x

1+x2 is > 0 when x > 0 and is < 0 when x < 0.
In addition, it follows from the work above that y is increasing when −1 < x < 1 and
decreasing when −1 < x or x > 1.

! "#$ %"#$

The end. !
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Quiz #8. Tuesday, 29 May, 2008 [10 minutes]

1. A spherical balloon is being filled at a rate of 1 m3/s. How is the radius of the balloon
changing at the instant that the balloon’s radius is 2 m? [5]

The volume of a sphere of radius r is V = 4
3πr3.

Solution. We are asked to find dr
dt at the instant in question. Since V = 4

3πr3,

dV

dt
=

d

dt

(
4

3
πr3

)
=

4

3
π

d

dt
r3 =

4

3
π ·

(
d

dr
r3

)
·
(

dr

dt

)
=

4

3
π · 3r2 · dr

dt
== 4πr2 · dr

dt
.

Plugging in the information that dV
dt = 1 m3/s and that r = 2 m at the instant in question,

we get

1 =
dV

dt
= 4πr2 · dr

dt
= 4π · 22 · dr

dt
= 16π · dr

dt
.

It follows that at the instant in question,

dr

dt
=

1

16π
m/s . !

9
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Quiz #9. Tuesday, 3 June, 2008 [10 minutes]

Compute two of the following three indefinite integrals. [10 = 2 × 5 each]

1.

∫
(w − 1)2 dw 2.

∫
ln(x)

x
dx 3.

∫
1 − √

x√
x

dx

Solutions. We’ll use the various integration rules.

1.

∫
(w − 1)2 dw =

∫ (
w2 − 2w + 1

)
dw

=

∫
w2 dw − 2

∫
w dw +

∫
1 dw

=
1

3
w3 − 2 · 1

2
w2 + w + C

=
1

3
w3 − w2 + w + C !

2.

∫
ln(x)

x
dx =

∫
1

u
du (Where u = ln(x) and so du =

1

x
dx.)

= ln(u) + C

= ln (ln(x)) + C !

3.

∫
1 − √

x√
x

dx =

∫ (
1√
x

−
√

x√
x

)
dx

=

∫ (
x−1/2 − 1

)
dx

=

∫
x−1/2 dx −

∫
1 dx

=
x1/2

1/2
− x + C

= 2x1/2 − x + C

= 2
√

x − x + C !

10
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Quiz #10. Thursday, 5 June, 2008 [10 minutes]

1. Find the area of the region between the x-axis and the curve y = x3−x = x(x+1)(x−1)
for −1 ≤ x ≤ 1. [5]

Solution. The curve y = x3 − x = x(x + 1)(x − 1) meets the x-axis when y = 0, i.e.
when x = −1, x = 0, and x = 1. When −1 ≤ x ≤ 0, the curve is above the x-axis since(
− 1

2

)3 −
(
− 1

2

)
= − 1

8 + 1
2 = 3

8 > 0, and when 0 ≤ x ≤ 1, the curve is below the x-axis since(
1
2

)3 − 1
2 = 1

8 − 1
2 = − 3

8 < 0. Thus the area of the region between the x-axis and the curve
y = x3 − x = x(x + 1)(x − 1) for −1 ≤ x ≤ 1 is given by:

∫ 1

−1

∣∣x3 − x
∣∣ dx =

∫ 0

−1

(
x3 − x

)
dx +

∫ 1

0

−
(
x3 − x

)
dx

=

∫ 0

−1

(
x3 − x

)
dx −

∫ 1

0

(
x3 − x

)
dx

=

(
1

4
x4 − 1

2
x2

)∣∣∣∣
0

−1

−
(

1

4
x4 − 1

2
x2

)∣∣∣∣
1

0

=

[(
1

4
04 − 1

2
02

)
−

(
1

4
(−1)4 − 1

2
(−1)2

)]

−
[(

1

4
14 − 1

2
12

)
−

(
1

4
04 − 1

2
02

)]

=

[
0 −

(
1

4
− 1

2

)]
−

[(
1

4
− 1

2

)
− 0

]

= −
(

−1

4

)
−

(
−1

4

)
=

1

4
+

1

4
=

1

2
!
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Mathematics 105H – Applied calculus
Trent University, Summer 2008

Solutions to the Test

1. Do all of a–d.

a. Find the equation of the line through (0, 3) with slope 2. [2]

Solution. A line with slope 2 must have an equation of the form y = 2x + b. Plugging in
x = 0 and y = 3 gives 3 = 2 · 0 + b, i.e. b = 3 − 0 = 3. Thus the line in question has the
equation y = 2x + 3. !
b. Find the tip (i.e. vertex) of the parabola y = −x2 + 2x + 2. [2]

Solution. We will find the tip of the parabola by completing the square in the equation
y = −x2 + 2x + 2:

y = −x2 + 2x + 2 = −
(
x2 − 2x

)
+ 2 = −

(
x2 − 2x + 1 − 1

)
+ 2

= −
(
x2 − 2x + 1

)
− (−1) + 2 = −(x − 1)2 + 3

It follows that the tip of the parabola is at (1, 3) and that it opens downward. !
c. Find the coordinates of the point(s) where the line and the parabola meet. [3]

Solution. At any such point the two eqtuations would have to give the same y value for
the same x:

−x2 + 2x + 2 = y = 2x + 3 =⇒ −x2 = 1 =⇒ x2 = −1

Since there is no real number whose square is −1, the line and the parabola have no points
in common, i.e. they do not intersect. !
d. Sketch a graph of the line and the parabola. [3]

Solution.

!
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2. Let f(x) = 1 − ex. Do all of a–d.

a. Find the x- and y-intercepts, if any, of y = f(x). [2]

Solution. f(0) = 1 − e0 = 1 − 1 = 0, so the y-intercept is (0, 0). f(x) = 1 − ex = 0 when
ex = 1, which occurs only when x = 0, so (0, 0) is also the only x-intercept. !
b. Find the domain and range of f(x). [2]

Solution. f(x) = 1 − ex is defined for all x since ex is, so the domain of f(x) is R =
(−∞,∞).

Since ex takes on all the values between 0 and ∞ as x runs through the real numbers,
f(x) = 1 − ex takes on all the values in between 1 − 0 = 1 and 1 − ∞ = −∞ as x runs
through the real numbers, so the range of f(x) is (−∞, 1). !
c. Determine whether y = f(x) has any horizontal asymptotes. [4]

Solution. We check to see what f(x) does as x → ±∞:

lim
x→∞

(1 − ex) =
(

lim
x→∞

1
)

−
(

lim
x→∞

ex
)

= 1 − ∞ = −∞

lim
x→−∞

(1 − ex) =

(
lim

x→−∞
1

)
−

(
lim

x→−∞
ex

)
= 1 − 0+ = 1−

Thus y = f(x) has a horizontal asymptote at y = 1 as x → ∞, which it approaches from
below, but no horizontal asymptote as x → ∞. !
d. Sketch the graph of y = f(x). [2]

Solution.

!
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3. Do any two (2) of a–c.

a. Compute lim
x→−∞

1 − x

1 + 2x
3x. [5]

Solution.

lim
x→−∞

1 − x

1 + 2x
3x =

(
lim

x→−∞
1 − x

1 + 2x

)
·
(

lim
x→−∞

3x

)
=

(
lim

x→−∞
1 − x

1 + 2x
·

1
x
1
x

)
· 0

=

(
lim

x→−∞

1
x − x

x
1
x

+ 2x
x

)
· 0 =

(
lim

x→−∞

1
x − 1
1
x

+ 2

)
· 0 =




lim
x→−∞

(
1
x − 1

)

lim
x→−∞

(
1
x + 2

)

 · 0

=
0 − 1

0 + 2
· 0 = −1

2
· 0 = 0 !

b. Compute lim
t→3

(t − 3)(t + 2)

t2 − 2t − 3
. [5]

Solution. Note that t2 − 2t − 3 = (t − 3)(t + 1).

lim
t→3

(t − 3)(t + 2)

t2 − 2t − 3
= lim

t→3

(t − 3)(t + 2)

(t − 3)(t + 1)
= lim

t→3

t + 2

t + 1

=
lim
t→3

(t + 2)

lim
t→3

(t + 1)
=

3 + 2

3 + 1
=

5

4
!

c. Use the limit definition of the derivative to compute f ′(1) for f(x) = 2x2 −4x+8. [5]

Solution.

f ′(1) = lim
h→0

f(1 + h) − f(1)

h
= lim

h→0

(
2(1 + h)2 − 4(1 + h) + 8

)
−

(
2 · 12 − 4 · 1 + 8

)

h

= lim
h→0

2
(
1 + 2h + h2

)
− 4 − 4h + 8 − 6

h
= lim

h→0

2 + 4h + 2h2 − 4h − 2

h

= lim
h→0

2h2

h
= lim

h→0
2h = 0 !

3
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4. Do any two (2) of a–c.

a. Find h′(x) if h(x) = e(x2+3) − ln(5x). [5]

Solution. First, note that

h(x) = e(x2+3) − ln(5x) = e(x2+3) − [ln(5) + ln(x)] = e(x2+3) − ln(5) − ln(x) .

Second, using the various rules for differentiation:

h′(x) =
d

dx

(
e(x2+3) − ln(5) − ln(x)

)
=

(
d

dx
e(x2+3)

)
−

(
d

dx
ln(5)

)
−

(
d

dx
ln(x)

)

= e(x2+3) ·
[

d

dx

(
x2 + 3

)]
− 0 − 1

x
= e(x2+3) · [2x + 0] − 1

x
= 2xe(x2+3) − 1

x
!

b. Find g′(w) if g(w) =
wln(w)

(w + 1)2
[5]

Solution. A job for the Quotient Rule if ever there was one!

g′(w) =
d

dw

(
wln(w)

(w + 1)2

)
=

(
d

dwwln(w)
)

· (w + 1)2 − wln(w) ·
(

d
dw (w + 1)2

)

((w + 1)2)
2

=

([
d

dww
]
· ln(w) + w ·

[
d

dw ln(w)
])

· (w + 1)2 − wln(w) ·
(
2(w + 1) ·

[
d

dw (w + 1)
])

(w + 1)4

=

(
1 · ln(w) + w · 1

w

)
· (w + 1)2 − wln(w) · (2(w + 1) · 1)

(w + 1)4

=
(w + 1)3ln(w) − 2w(w + 1)ln(w)

(w + 1)4
=

(w + 1)2ln(w) − 2wln(w)

(w + 1)3

=

(
(w + 1)2 − 2w

)
ln(w)

(w + 1)3
=

(
w2 + 2w + 1 − 2w

)
ln(w)

(w + 1)3
=

(
w2 + 1

)
ln(w)

(w + 1)3
!

c. Find the equation of the tangent line to y = 1
2x2 + x − 1 at x = 3. [5]

Solution. At x = 3, y = 1
232 + 3 − 1 = 9

2 + 2 = 13
2 , so the tangent line passes through the

point
(
3, 13

2

)
. Since

dy

dx
=

d

dx

(
x2 + x − 1

)
= 2x + 1 ,

the slope of the tangent line is

dy

dx

∣∣∣∣
x=3

= 2 · 3 + 1 = 7 .

Plugging the point
(
3, 13

2

)
into the equation y = 7x + b yields

13

2
= 7 · 3 + b =⇒ b =

13

2
− 21 =

13

2
− 42

2
= −29

2
.

Thus the equation of the tangent line in question is y = 7x − 29
2 . !

4
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Mathematics 1100Y – Calculus I: Calculus of one variable
Trent University, Summer 2010

Quiz Solutions

Quiz #1 Wednesday, 12 May, 2010. [10 minutes]

1. Suppose the graph of y = x2 is stretched vertically by a factor of 3, and then shifted
by 2 units to the right and 1 unit down. Find the formula of the parabola with this
curve as its graph. [5]

2. Use the Limit Laws to evaluate lim
x→0

x2 − 1

x2 + 1
. [5]

Solution to 1. To stretch the graph of y = x2 vertically by a factor of 3, we simply
multiply the output by 3 to get y = 3x2. Shifting the graph by 2 units to the right
corresponds to replacing x by x− 2 to get y = 3(x− 2)2. To shift the graph down by 1, we
just subtract 1 to get y = 3(x−2)2 −1. It follows that the formula of the desired parabola
is y = 3(x − 2)2 − 1 = 3x2 − 12x + 11. �
Solution to 2. Here goes – you should be able to identify the Limit Law(s) used at each
step for yourself pretty readily:

lim
x→0

x2 − 1

x2 + 1
=

lim
x→0

�
x2 − 1

�

lim
x→0

(x2 + 1)
=

�
lim
x→0

x2
�
−
�

lim
x→0

1
�

�
lim
x→0

x2
�

+
�

lim
x→0

1
� =

02 − 1

02 + 1
=

−1

1
= −1 �

Quiz #2 Monday, 17 May, 2010. [12 minutes]

Do one (1) of the following two questions.

1. Find all the vertical and horizontal asymptotes of f(x) =
x

x − 1
and give a rough

sketch of its graph. [10]

2. Use the ε–δ definition of limits to verify that lim
x→1

(3x − 1) = 2. [10]

Solution to 1. To find the horizontal asymptotes, we need only compute the limits of
f(x) as x tends to +∞ and −∞, respectively, and see what happens:

lim
x→+∞

x

x − 1
= lim

x→+∞
x

x − 1
· 1/x

1/x
= lim

x→+∞
1

1 − 1/x
=

1

1 − 0
= 1+

lim
x→−∞

x

x − 1
= lim

x→−∞
x

x − 1
· 1/x

1/x
= lim

x→−∞
1

1 − 1/x
=

1

1 + 0
= 1−

Thus f(x) has y = 1 as an asymptote in both directions. Note that it approaches this
asymptote from above when x → +∞ and from below when x → −∞.

To find any vertical asymptotes, we first need to find the points at which f(x) is

undefined. Since the expression
x

x − 1
makes sense for any x unless the denominator is 0,

1
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i.e. when x = 1. To actually check for vertical asymptotes at, we now compute the limits
f(x) as x tends to 1 from the left and the right, respectively, and see what happens:

lim
x→1−

x

x − 1
=

1

1− − 1
=

1

0−
= −∞

lim
x→1+

x

x − 1
=

1

1+ − 1
=

1

0+
= +∞

Thus f(x) has a vertical asymptote at x = 1; f(x) shoots down to −∞ as x approaches 1
from the left and f(x) shoots up to +∞ as x approaches 1 from the right.

To graph f(x) it’s also convenient to note that f(0) = 0
0−1 = 0, so (0, 0) is both and

x- and y-intercept. Here’s a graph of f(x) =
x

x − 1
:

-3

-2

-1

 0

 1

 2

 3

 4

 5

-4 -2  0  2  4

x/(x-1)

This graph was created using Yacas (“Yet Another Computer Algebra System”), a free
program that can do much of what Maple and Mathematica can. �
Solution to 2. We need to show that for any ε > 0 there is a δ > 0 such that if
|x − 1| < δ, then |(3x − 1) − 2| < ε.

Suppose, then, that an ε > 0 is given. We will find a corresponding δ > 0 by reverse-
engineering |(3x − 1) − 2| < ε to look a much as possible like |x − 1| < δ:

|(3x − 1) − 2| < ε ⇐⇒ |3x − 3| < ε

⇐⇒ |3(x − 1)| < ε

⇐⇒ 3 |x − 1| < ε

⇐⇒ |x − 1| <
ε

3

Since the steps are all reversible, it follows that δ = ε
3 does the job: if |x − 1| < δ, then

|(3x − 1) − 2| < ε.
It follows by the ε–δ definition of limits that lim

x→1
(3x − 1) = 2. �

2
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Quiz #3 Wednesday, 19 May, 2010. [10 minutes]

1. Compute the derivative of f(x) =
x2 − 2x

x − 1
. [5]

2. Compute the derivative of g(x) = arctan (ex). [5]

Solution to 1. Our main tool here is the Quotient Rule:

f �(x) =
d

dx

�
x2 − 2x

x − 1

�

=

�
d
dx

�
x2 − 2x

��
· (x − 1) −

�
x2 − 2x

�
·
�

d
dx (x − 1)

�

(x − 1)2

=
(2x − 2) · (x − 1) −

�
x2 − 2x

�
· 1

(x − 1)2

=
2x2 − 4x + 2 − x2 + 2x

(x − 1)2

=
x2 − 2x + 2

(x − 1)2

For those determined to simplify further, one could rewrite x2 − 2x+2 as (x− 1)2 +1 and
take it from there, but one doesn’t really gain much by this. �
Solution to 2. The main tool for this one is the Chain Rule:

g�(x) =
d

dx
arctan (ex)

= arctan� (ex) · d

dx
ex

=
1

1 + (ex)
2 · ex

=
ex

1 + e2x

Those who really want to could also rewrite this as 1
e−x+ex . �

3
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Quiz #4 Wednesday, 26 May, 2010. [12 minutes]

1. Use logarithmic differentiation to compute the derivative of g(x) = xx. [5]

2. A pebble is dropped into a still pond, creating a circular ripple that moves outward
from its centre at 2 m/s . How is the area enclosed by the ripple changing at the
instant that the radius of the ripple is 3 m? [5]

(Just in case: The area of a circle with radius r is πr2.)

Solution to 1. We will take the derivative of ln (g(x)) and then solve for g�(x). On the
one hand,

d

dx
ln (g(x)) =

d

dx
ln (xx) =

d

dx
(xln (x)) [Using properties of logarithms.]

=

�
d

dx
x

�
· ln (x) + x · d

dx
ln (x) [Using the Product Rule.]

= 1 · ln (x) + x · 1

x
= ln (x) + 1 ,

and on the other hand, it follows from the Chain Rule that

d

dx
ln (g(x)) =

1

g(x)
· g�(x) .

Hence

g�(x) = g(x) · d

dx
ln (g(x)) = xx · (ln (x) + 1) .

(Those with a taste for perversity may rearrange this as

g�(x) = xx · (ln (x) + 1) = xxln (x) + xx = ln
�
x(xx)

�
+ xx ,

but that’s just a little sickening . . . :-) �
Solution to 2. The area of a circle of radius r is A = πr2; we wish to know dA

dt at the
instant in question. Using the Chain Rule,

dA

dt
=

d

dt
πr2 = π

�
d

dr
r2

�
· dr

dt
= π · 2r

dr

dt
= 2πr

dr

dt
.

Plugging in the given values, that r = 3 at the instant we’re interested in and that dr
dt = 2,

we thus get:
dA

dt
= 2π · 3 · 2 = 12π

Thus the area enclosed by the ripple is changing at a rate of 12π m2/s at the instant in
question. �

4
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Quiz #5 Monday, 31 May, 2010. [15 minutes]

1. Let f(x) =
x

x2 + 1
. Find the domain and all the intercepts, vertical and horizontal

asymptotes, and local maxima and minima of f(x), and sketch its graph using this
information. [10]

Solution. Here goes!

i. (Domain.) The expression x
x2+1 makes sense for all x. (Note that the denominator is

always ≥ 1.) Thus the domain of f(x) is all of R. �
ii. (Intercepts.) f(0) = 0, so (0, 0) is the only x-intercept. Since x

x2+1 can only equal 0 if
the numerator, x, is 0, (0, 0) is also the only y-intercept. �

iii. (Vertical asymptotes.) Since there are no points at which f(x) is not defined and
continuous, it has no vertical asymptotes. �

iv. (Horizontal asymptotes.) Since

lim
x→+∞

x

x2 + 1
= lim

x→+∞
x

x2 + 1
· 1/x2

1/x2
= lim

x→+∞

1
x

1 + 1
x2

=
0

1 + 0
= 0 and

lim
x→−∞

x

x2 + 1
= lim

x→−∞
x

x2 + 1
· 1/x2

1/x2
= lim

x→−∞

1
x

1 + 1
x2

=
0

1 + 0
= 1 ,

f(x) has the horizontal asymptote y = 0 in both directions. Note that as x → +∞,
x

x2+1 > 0, since the numerator and denominator are both positive when x > 0.
Similarly, as x → −∞, x

x2+1 < 0, since the numerator is negative and the denominator
is positive when x < 0. It follows that f(x) approaches the horizontal asymptote y = 0
from above when heading out to +∞, and from below when heading out to −∞. �

v. (Local maxima and minima.) We’ll need the derivative of f(x), which we compute
using the Quotient Rule:

f �(x) =
dx
dx ·

�
x2 + 1

�
− x · d

dx (x2 + 1)

(x2 + 1)
2 =

1 ·
�
x2 + 1

�
− x · 2x

(x2 + 1)
2 =

1 − x2

(x2 + 1)
2

To fond the critical points, observe that f �(x) = 0 exactly when 1 − x2 = 0. Since
1−x2 = (1+x)(1−x), this means that f �(x) = 0 for x = −1 and x+1. We construct
the usual table to determine if these are local maxima, minima, or neither:

x (−∞,−1) −1 (−1, 1) 1 (1,∞)
f �(x) < 0 0 > 0 0 < 0
f(x) ↓ − 1

2 ↑ 1
2 ↓

It follows that f(−1) − − 1
2 is a local minimum and f(1) = 1

2 is a local maximum of
f(x). Note that f �(x), like f(x), is defined and continuous everywhere, so the critical
points are all we need to check when looking for local maxima and minima. �

5
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vi. (Graph.) Here’s a graph of f(x) =
x

x2 + 1
:

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-4 -2  0  2  4

x/(x^2+1)

This graph was created using Yacas (“Yet Another Computer Algebra System”), a free
program that can do much of what Maple and Mathematica can. �

That’s all, folks! �

Quiz #6 Wednesday, 2 June, 2010. [10 minutes]

1. Use the Left-Hand Rule to compute

� 1

0

(x+1) dx, the area between the line y = x+1

and the x-axis for 0 ≤ x ≤ 1. [10]

Hint: You may need the formula

n�

i=1

i = 1 + 2 + 3 + · · · + n =
n(n + 1)

2
.

Solution. We plug f(x) = x + 1, a = 0, and b = 1 into the Left-Hand Rule formula and
compute the resulting limit:

� 1

0

(x + 1) dx = lim
n→∞

n−1�

i=0

b − a

n
f

�
a + i

b − a

n

�
= lim

n→∞

n−1�

i=0

1 − 0

n
f

�
0 + i

1 − 0

n

�

= lim
n→∞

n−1�

i=0

1

n
f

�
i

n

�
= lim

n→∞

n−1�

i=0

1

n

�
i

n
+ 1

�
= lim

n→∞

n−1�

i=0

�
i

n2
+

1

n

�

=

�
lim

n→∞

n−1�

i=0

i

n2

�
+

�
lim

n→∞

n−1�

i=0

1

n

�
=

�
lim

n→∞
1

n2

n−1�

i=0

i

�
+

�
lim

n→∞
n

1

n

�

=

�
lim

n→∞
1

n2

(n − 1)n

2

�
+
�

lim
n→∞

1
�

=

�
lim

n→∞
n − 1

2n

�
+ 1

=

�
lim

n→∞
n − 1

2n
· 1/n

1/n

�
+ 1 =

�
lim

n→∞
1 − 1

n

2

�
+ 1 =

1 − 0

2
+ 1 =

3

2
�

6
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Quiz #7 Monday, 7 June, 2010. [10 minutes]

1. Compute

� 2

0

�
x2 − 2x + 1

�
dx. [10]

Solution. Here goes, in entirely excessive detail!

� 2

0

�
x2 − 2x + 1

�
dx =

� 2

0

x2 dx −
� 2

0

2x dx +

� 2

0

1 dx [Linearity.]

=
x3

3

����
2

0

− 2
x2

2

����
2

0

+ x|20 [Power Rule.]

=

�
23

3
− 03

3

�
−
�

22

2
− 02

2

�
+ (2 − 0) [Putting in the numbers.]

=
8

3
− 2 + 2 =

8

3
[Arithmetic.] �

Quiz #8 Wednesday, 9 June, 2010. [10 minutes]

1. Find the area between y = x cos
�
x2
�

and the x-axis for −
�

π
2 ≤ x ≤

�
π
2 . [10]

Solution. Note that the x-axis is the line y = 0. Observe that when −
�

π
2 ≤ x ≤ 0,

0 ≤ x2 ≤ π
2 , so cos

�
x2
�
≥ 0 and hence x cos

�
x2
�
≤ 0. Similarly, when 0 ≤ x ≤

�
π
2 ,

0 ≤ x2 ≤ π
2 , so cos

�
x2
�
≥ 0 and hence x cos

�
x2
�
≥ 0. The area we want, therefore, is the

sum of two definite integrals, which we evaluate with the help of the Substitution Rule:

Area =

� 0

−
√

π/2

�
0 − x cos

�
x2
��

dx +

� √
π/2

0

�
x cos

�
x2
�
− 0
�

dx

Using u = x2, so du = 2x dx, and thus x dx =
1

2
du, and

changing limits,
x −

�
π/2 0

�
π/2

u π/2 0 π/2
we get:

=

� 0

π/2

−1

2
cos(u) du +

� π/2

0

1

2
cos(u) du

Since

� b

a

f(x) dx = −
� a

b

f(x) dx, we now get:

=

� π/2

0

1

2
cos(u) du +

� π/2

0

1

2
cos(u) du

=

� π/2

0

cos(u) du = sin(u)|π/2
0 = sin

�π
2

�
− sin (0) = 1 − 0 = 1 �

7
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Quiz #9 Monday, 14 June, 2010. [10 minutes]

The region between y = 2 − x and the x-axis, for 0 ≤ x ≤ 2, is rotated about the
y-axis. Find the volume of the resulting solid of revolution using both

1. the disk method [5] and

2. the method of cylindrical shells. [5]

Solution to 1. Note that if x is between 0 and 2, y = 2 − x is also between 0 and 2.
The disk at height y = 2 − x would have radius R = x = 2 − y. Thus the volume of the
solid of revolution in this case is:

� 2

0

πR2 dy =

� 2

0

πx2 dy =

� 2

0

(2 − y)2 dy

=

� 2

0

�
4 − 4y + y2

�
dy = π

�
4y − 4

y2

2
+

y3

3

�����
2

0

= π

�
4 · 2 − 4

4

2
+

8

3

�
− π

�
4 · 0 − 4

0

2
+

0

3

�

= π · 8

3
− π · 0 =

8

3
π �

Solution to 2. The cylindrical shell at x would have radius R = x and height h = y =
2 − x. Thus the volume of the solid of revolution in this case is:

� 2

0

2πRhdx =

� 2

0

2πxy dx =

� 2

0

2πx(2 − x) dx

=

� 2

0

2π
�
2x − x2

�
dx = 2π

�
2
x2

2
− x3

3

�����
2

0

= 2π

�
2
4

2
− 8

3

�
− 2π

�
2
0

2
− 0

3

�

= 2π · 4

3
− 2π · 0 =

8

3
π �

8

173



Quiz #10 Wednesday, 16 June, 2010. [10 minutes]

1. Compute

� e

1

(ln(x))
2

dx. [10]

Solution. We will use integration by parts with u = (ln(x))
2

and v� = 1, so u� = 2ln(x)· 1
x

and v = x. Then:� e

1

(ln(x))
2

dx =

� e

1

u · v� dx = u · v|e1 −
� e

1

v · u� dx

= (ln(x))
2 · x

���
e

1
−
� e

1

x · 2ln(x) · 1

x
dx

=
�
(ln(e))

2 · e − (ln(1))
2 · 1

�
− 2

� e

1

ln(x) dx

To solve the remaining integral we use parts again, with

s = ln(x) and t� = 1, so s� =
1

x
and t = x.

=
�
12 · e − 02 · 1

�
− 2

�
ln(x) · x|e1 −

� e

1

x · 1

x
dx

�

= e − 2

�
(ln(e) · e − ln(1) · 1) −

� e

1

1 dx

�

= e − 2 [(1 · e − 0 · 1) − x|e1]
= e − 2 [e − (e − 1)]

= e − 2 �
Quiz #11 Monday, 21 June, 2010. [12 minutes]

Compute each of the following integrals:

1.

� π/2

0

cos3(x) sin2(x) dx [5] 2.

�
sec3(x) dx [5]

Solution to 1.� π/2

0

cos3(x) sin2(x) dx =

� π/2

0

cos2(x) sin2(x) cos(x) dx

=

� π/2

0

�
1 − sin2(x)

�
sin2(x) cos(x) dx

=

� π/2

0

�
sin2(x) − sin4(x)

�
cos(x) dx =

� 1

0

�
u2 − u4

�
du

Using the substitution u = sin(x), so

du = cos(x) dx, and
x 0 π/2
u 0 1

.

=

�
1

3
u3 − 1

5
u5

�����
1

0

=

�
1

3
13 − 1

5
15

�
−
�

1

3
03 − 1

5
05

�

=
1

3
− 1

5
=

2

15
�

9
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Solution i to 2. We’ll use the reduction formula for
�

secn(x) dx,
�

sec3(x) dx =
1

3 − 1
sec3−2(x) tan(x) +

3 − 2

3 − 1

�
sec3−2(x) dx

=
1

2
sec(x) tan(x) +

1

2

�
sec(x) dx

=
1

2
sec(x) tan(x) +

1

2
ln (sec(x) + tan x) + C ,

as well as having memorized a certain notoriously nasty anti-derivative. �
Solution ii to 2. We’ll use integration by parts, with

u = sec(x) v� = sec2(x)
u� = sec(x) tan(x) v = tan(x)

rather than apply the reduction formula, and also do a certain notoriously nasty anti-
derivative from scratch.�

sec3(x) dx = sec(x) tan(x) −
�

tan(x) sec(x) tan(x) dx

= sec(x) tan(x) −
�

sec(x) tan2(x) dx

= sec(x) tan(x) −
�

sec(x)
�
sec2(x) − 1

�
dx

= sec(x) tan(x) −
� �

sec3(x) − sec(x)
�

dx

= sec(x) tan(x) −
�

sec3(x) dx +

�
sec(x) dx

Moving all copies of
�

sec3(x) dx to the left in this equation gives

2

�
sec3(x) dx = sec(x) tan(x) +

�
sec(x) dx ,

so �
sec3(x) dx =

1

2
sec(x) tan(x) +

1

2

�
sec(x) dx .

We still need to compute
�

sec(x) dx:
�

sec(x) dx =

�
sec(x) · sec(x) + tan(x)

sec(x) + tan(x)
dx =

�
sec2(x) + sec(x) tan(x)

sec(x) + tan(x)
dx

We now use the substitution u = sec(x) + tan(x), so

du =
�
sec(x) tan(x) + sec2(x)

�
dx.

=

�
1

u
du = ln(u) + C = ln (sec(x) + tan(x)) + C

Hence �
sec3(x) dx =

1

2
sec(x) tan(x) +

1

2
ln (sec(x) + tan(x)) + C .

Whew! �

10
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Quiz #12 Wednesday, 23 June, 2010. [15 minutes]

Compute each of the following integrals:

1.

�
1√

4 − x2
dx [5] 2.

� 2

1

x
�

x2 − 1 dx [5]

Solution to 1. Since we see see an expression of the form 1√
4−x2

, we will use the trig

substitution x = 2 sin(θ), so dx = 2 cos(θ) dθ and θ = arcsin
�

x
2

�
.

�
1√

4 − x2
dx =

�
1�

4 − 4 sin2(θ)
2 cos(θ) dθ =

�
2 cos(θ)�
4 cos2(θ)

dθ

=

�
2 cos(θ)

2 cos(θ)
dθ =

�
1 dθ = θ + C = arcsin

�x

2

�
+ C �

Solution i to 2. [The hard way.] Since we see an expression of the form
√

x2 − 1, we

will use the trig substitution x = sec(θ), so dx = sec(θ) tan(θ) dθ and
x 1 2
θ 0 π

3

. (Recall

that cos(0) = 1, so sec(0) = 1, and cos
�
π
3

�
= 1

2 , so sec
�
π
3

�
= 2.)

� 2

1

x
�

x2 − 1 dx =

� π/3

0

sec(θ)
�

sec2(θ) − 1 sec(θ) tan(θ) dθ

=

� π/3

0

sec(θ)
�

tan2(θ) sec(θ) tan(θ) dθ

=

� π/3

0

sec(θ) tan(θ) sec(θ) tan(θ) dθ

=

� π/3

0

tan2(θ) sec2(θ) dθ =

� √
3

0

u2 du

Using the substitution u = tan(θ),

so du = sec2(θ) dθ and
θ 0 π/3

u 0
√

3
.

=
1

3
u3

����

√
3

0

=
1

3

�√
3
�3

− 1

3
03 =

1

3
3
√

3 − 0 =
√

3 �

Solution ii to 2. [The easier way.] Note that the derivative of w = x2 − 1 is dw
dx = 2x

and that we have an x outside the square root. We will therefore use the substitution

w = x2 − 1, so dw = 2x dx and
x 1 2
w 0 3

. Note that 1
2dw = x dx.

� 2

1

x
�

x2 − 1 dx =

� 3

0

√
w

1

2
dw =

1

2

� 3

0

w1/2 dw =
1

2
· w3/2

3/2

����
3

0

=
1

3
w3/2

����
3

0

=
1

3

�√
3
�3

− 1

3
03 =

1

3
3
√

3 − 0 =
√

3 �
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Quiz #13 Monday, 28 June, 2010. [12 minutes]

1. Compute

�
2x2 + 3

(x2 + 4) (x − 1)
dx

Solution. This is a job for partial fractions. Note that the polynomial in the numerator
has lower degree than the polynomial in the denominator, and that the latter is already
factored into an irreducible quadratic (as x2 + 4 > 0 for all x) and a linear term.

First, we rewrite the rational function using partial fractions:

2x2 + 3

(x2 + 4) (x − 1)
=

Ax + B

x2 + 4
+

C

x − 1

=
(Ax + B)(x − 1) + C

�
x2 + 4

�

(x2 + 4) (x − 1)

=
Ax2 − Ax + Bx − B + Cx2 + 4C

(x2 + 4) (x − 1)

=
(A + C)x2 + (B − A)x + (4C − B)

(x2 + 4) (x − 1)

Comparing the coefficients in the numerators at the beginning and the end gives us a
system of linear equations,

A + C = 2
− A + B = 0

− B + 4C = 3 ,

which we solve. From the second equation, we know that A = B. Substituting this in
gives us a system of two equations:

A + C = 2
− A + 4C = 3

If we add these two, A disappears and we are left with 5C = 5, so C = 1. Substituting
this into A + C = 2 gives us A = 1, and since A = B, it follows also that B = 1. Thus

2x2 + 3

(x2 + 4) (x − 1)
=

x + 1

x2 + 4
+

1

x − 1
.

Second, we split the integral up accordingly,

2x2 + 3

(x2 + 4) (x − 1)
dx =

�
x + 1

x2 + 4
dx +

�
1

x − 1
dx

=

�
x

x2 + 4
dx +

�
1

x2 + 4
dx +

�
1

x − 1
dx ,

and work on the pieces.

12
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For

�
x

x2 + 4
dx we use the substitution u = x2 + 4, so du = 2x dx and x dx = 1

2 du.

Then �
x

x2 + 4
dx =

�
1

u
· 1

2
du =

1

2
ln(u) + K =

1

2
ln
�
x2 + 4

�
+ K ,

where K is the generic constant.

For

�
1

x2 + 4
dx we use the trig substitution x = 2 tan(θ), so dx = 2 sec2(θ) dθ and

θ = arctan
�

x
2

�
. Then, using the identity 1 + tan2(θ) = sec2(θ) at the key step,

�
1

x2 + 4
dx =

�
1

4 tan2(θ) + 4
· 2 sec2(θ) dθ =

2

4

�
sec2(θ)

sec2(θ)
dθ

=
1

2

�
1 dθ =

1

2
θ + L =

1

2
arctan

�x

2

�
+ L ,

where L is the generic constant.

For

�
1

x − 1
dx we use the subsitution w = x − 1, so dw = dx. Then

�
1

x − 1
dx =

�
1

w
dw = ln(w) + M = ln(x − 1) + M ,

where M is the generic constant.
It follows that

�
2x2 + 3

(x2 + 4) (x − 1)
dx =

�
x

x2 + 4
dx +

�
1

x2 + 4
dx +

�
1

x − 1
dx

=
1

2
ln
�
x2 + 4

�
+

1

2
arctan

�x

2

�
+ ln(x − 1) + N ,

where N = K + L + M is the combined generic constant. �
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Quiz #14 Wednesday, 30 June, 2010. [10 minutes]

1. Compute

� ∞

0

1

x2 + 1
dx. [10]

Solution. This is obviously an improper integral, so we need to take a limit:

� ∞

0

1

x2 + 1
dx = lim

t→∞

� t

0

1

x2 + 1
dx

Using the trig substitution x = tan(θ), so that

dx = sec2(θ) dθ, and keeping the limits for x gives:

= lim
t→∞

� x=t

x=0

1

tan2(θ) + 1
sec2(θ) dθ

Using the identity tan2(θ) + 1 = sec2(θ) gives:

= lim
t→∞

� x=t

x=0

1

sec2(θ)
sec2(θ) dθ

= lim
t→∞

� x=t

x=0

1 dθ = lim
t→∞

θ|x=t
x=0

Substituting back:

= lim
t→∞

arctan(x)|x=t
x=0

= lim
t→∞

(arctan(t) − arctan(0))

Since tan(0) = 0 we also have arctan(0) = 0.

= lim
t→∞

arctan(t) =
π

2

Since tan(θ) has a vertical asymptote at
π

2
. �

Quiz #15 Monday, 5 July, 2010. [10 minutes]

1. Compute the arc-length of the curve y =
2

3
x3/2, where 0 ≤ x ≤ 1.

Solution. First,
dy

dx
=

2

3
· 3

2
x1/2 = x1/2. Plugging this into the arc-length formula gives:

Arc-length =

� 1

0

�
1 +

�
dy

dx

�2

dx =

� 1

0

�
1 +

�
x1/2

�2
dx =

� 1

0

√
1 + x dx

Substitute u = x + 1, so du = dx and
x 0 1
u 1 2

.

=

� 2

1

√
u du =

� 2

1

u1/2 du =
u3/2

3/2

����
2

1

=
2

3
23/2 − 2

3
13/2

=
2

3
2
√

2 − 2

3
1 =

2

3

�
2
√

2 − 1
�

�

14
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Quiz #16 Wednesday, 7 July, 2010. [15 minutes]

1. Find the arc-length of the parametric curve x = t cos(t) and y = t sin(t), where
0 ≤ t ≤ 1. [10]

Solution. First, using the Chain Rule, we compute

dx

dt
= 1 · cos(t) + t · (− sin(t)) = cos(t) − t sin(t) and

dy

dt
= 1 · sin(t) + t · sin(t) = sin(t) + t cos(t) .

Second, we plug this into the arc-length formula for parametric curves:

Arc-length =

� 1

0

��
dx

dt

�2

+

�
dy

dt

�2

dt

=

� 1

0

�
(cos(t) − t sin(t))

2
+ (sin(t) + t cos(t))

2
dt

=

� 1

0

�
cos2(t) − 2t cos(t) sin(t) + t2 sin2(t)

+ sin2(t) + 2t cos(t) sin(t) + t2 cos2(t)
dt

=

� 1

0

��
cos2(t) + sin2(t)

�
(1 + t2) dt =

� 1

0

�
1 + t2 dt

Substitute t = tan(θ), so dt = sec2(θ) dθ

and
t 0 1
θ 0 π/4

.

=

� π/4

0

�
1 + tan2(θ) sec2(θ) dθ

=

� π/4

0

�
sec2(θ) sec2(θ) dθ =

� π/4

0

sec3(θ) dθ

This can be done by parts, or looking it up,

or even doing Quiz #11 over again. :-)

=

�
1

2
tan(θ) sec(θ) − 1

2
ln (tan(θ) + sec(θ))

�����
π/4

0

Recall that tan(π/4) = 1 and sec(π/4) =
√

2,

while tan(0) = 0 and sec(0) = 1, and ln(1) = 0.

=

�
1

2
1
√

2 − 1

2
ln
�
1 +

√
2
��

−
�
1

2
0 · 1 − 1

2
ln (0 + 1)

�

=
1

2

√
2 − 1

2
ln
�
1 +

√
2
�

�
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Quiz #17 Monday, 12 July, 2010. [15 minutes]

1. Sketch the curve given by r = sin(θ), 0 ≤ θ ≤ π, in polar coordinates. [2]

2. Sketch the curve given by r = sin(θ), π ≤ θ ≤ 2π, in polar coordinates. [2]

3. Find the area of the region enclosed by the curve given by r = sin(θ), 0 ≤ θ ≤ π, in
polar coordinates. [6]

Bonus: Find an equation in Cartesian coordinates for the curve given by r = sin(θ),
0 ≤ θ ≤ π, in polar coordinates. [2]

Solution to 1. Note that as θ changes from 0 to π, r increases from 0 to 1 (at θ = π/2),
and then decreases to 0 again. See Figure 1 below. �

Solution to 2. Note that as θ changes from π to 2π, r decreases from 0 to −1 (at
θ = π/2), and then increases to 0 again. Recall that a negative r is interpreted as being
|r| units from the origin in the opposite direction. See Figure 2 above. �
Solution to 3. We plug r = sin(θ) into the area formula for polar coordinates and chug
away:

� π

0

1

2
r2 dθ =

1

2

� π

0

sin2(θ) dθ =
1

2

� π

0

1 − cos(2θ)

2
dθ =

1

4

� π

0

(1 − cos(2θ)) dθ

=
1

4

�
θ − 1

2
sin(2θ)

�����
π

0

=
1

4

�
π − 1

2
sin(2π)

�
− 1

4

�
0 − 1

2
sin(2 · 0)

�

=
1

4
(π − 0) − 1

4
(0 − 0) =

π

4
�

Solution to the Bonus. Observe that for this curve x = r cos(θ) = sin(θ) cos(θ) =
1
2 sin(2θ) and y = r sin(θ) = sin(θ) sin(θ) = sin2(θ) = 1

2 − 1
2 cos(2θ), so

x2 +

�
y − 1

2

�2

=

�
1

2
sin(2θ)

�2

+

�
1

2
− 1

2
cos(2θ) − 1

2

�2

=
1

4
sin2(2θ) +

1

4
cos2(2θ) =

1

4
.

That is, the curve is a circle of radius 1
2 and centre

�
0, 1

2

�
, which is compatible with the

sketch in Figure 1 above. �
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Quiz #18 Wednesday, 14 July, 2010. [12 minutes]

1. Use the definition of convergence of a series to compute
∞�

n=1

1

n(n + 1)
. [10]

Hint: Note that
1

k(k + 1)
=

1

k
− 1

k + 1
.

Solution. By definition,
∞�

n=1

1

n(n + 1)
converges to a number L if the partial sums Sn =

n�

i=1

1

i(i + 1)
have a limit of L as n → ∞. We check to see what happens when we take the

limit of the partial sums:

lim
n→∞

Sn = lim
n→∞

n�

i=1

1

i(i + 1)

= lim
n→∞

�
1

1(1 + 1)
+

1

2(2 + 1)
+

1

3(3 + 1)
+ · · · +

1

(n − 1)n
+

1

n(n + 1)

�

= lim
n→∞

�
1

1 · 2
+

1

2 · 3
+

1

3 · 4
+ · · · +

1

(n − 1)n
+

1

n(n + 1)

�

(Now the hint comes in at last!)

= lim
n→∞

��
1

1
− 1

2

�
+

�
1

2
− 1

3

�
+ · · · +

�
1

n − 1
− 1

n

�
+

�
1

n
− 1

n + 1

��

= lim
n→∞

�
1

1
+

�
−1

2
+

1

2

�
+

�
−1

3
+ · · · +

1

n − 1

�
+

�
− 1

n
+

1

n

�
− 1

n + 1

�

= lim
n→∞

�
1

1
− 1

n + 1

�
= 1 − 0 = 1 since

1

n + 1
→ 0 as n → ∞.

It follows that
∞�

n=1

1

n(n + 1)
converges and = 1. �

Quiz #19 Monday, 19 July, 2010. [10 minutes]

1. Determine whether the series
∞�

n=0

1

n2 + 1
converges or diverges. [10]

Solution. Observe that
1

n2 + 1
is a ratio of polynomials in n with the degree of the

denominator being 2 = 2 − 0 more than the degree of the numerator. Since 2 > 1, it
follows by the Generalized p-Test that the series converges. �
Note: This series can also be shown to converge by using the Integral Test or the Com-
parison Test (or one of its several variants and extensions).
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Quiz #20 Wednesday, 14 July, 2010. [12 minutes]

1. Determine whether the series
∞�

n=0

cos(nπ)

1 + n
converges conditionally, converges abso-

lutely, or diverges. [10]

Solution. This series converges conditionally. To see that it does converge, we apply the
Alternating Series Test.

Zeroth, observe that cos(0) = 1, cos(π) = −1, cos(2π) = 1, cos(3π) = −1, and so on.
In general, cos(nπ) = (−1)n.

First, note that the series survives the Divergence Test:

lim
n→∞

����
cos(nπ)

1 + n

���� = lim
n→∞

|(−1)n|
1 + n

= lim
n→∞

1

1 + n
= 0 ,

since 1 + n → ∞ as n → ∞.
Second, since n + 2 > n + 1 for n ≥ 0,

����
cos(nπ)

1 + n

���� =
1

n + 1
>

1

n + 2
=

����
cos ((n + 1)π))

1 + n

���� ,

so the terms of the series are decreasing in absolute value.

Third, since cos(nπ) = (−1)n and since 1
1+n > 0 when n ≥ 0, it follows that cos(nπ)

1+n

alternates sign as n increases, i.e.

∞�

n=0

cos(nπ)

1 + n
is an alternating series.

It follows that

∞�

n=0

cos(nπ)

1 + n
converges by the Alternating Series Test. To see that

it does not converge absolutely, consider the corresponding series of absolute values,
∞�

n=0

����
cos(nπ)

1 + n

���� =
∞�

n=0

1

1 + n
. Since

1

1 + n
is a ratio of polynomials in n with the degree

of the denominator being 1 = 1 − 0 more than the degree of the numerator. Since 1 ≤ 1,
it follows by the Generalized p-Test that the series of absolute values diverges.

Thus

∞�

n=0

cos(nπ)

1 + n
converges conditionally. �
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Quiz #21 Monday, 26 July, 2010. [15 minutes]

1. Find the radius and interval of convergence of the power series
∞�

n=0

n3n

2n+1
xn. [10]

Solution. We will use the Ratio Test to find the radius of convergence:

lim
n→∞

����
an+1

an

���� = lim
n→∞

�����
(n+1)3n+1

2n+2 xn+1

n3n

2n+1 xn

����� = lim
n→∞

����
(n + 1)3n+12n+1xn+1

n3n2n+2xn

����

= lim
n→∞

����
3(n + 1)x

2n

���� =
3|x|
2

lim
n→∞

n + 1

n

=
3|x|
2

lim
n→∞

�
1 +

1

n

�
=

3|x|
2

(1 + 0) =
3|x|
2

It follows by the Ratio Test that
∞�

n=0

n3n

2n+1
xn converges absolutely when

3|x|
2

< 1, i.e. when

|x| <
2

3
, and diverges when

3|x|
2

> 1, i.e. when |x| >
2

3
. Thus the radius of convergence

of the series is R =
2

3
.

As R < ∞, we need to determine whether the series converges at x = ±R = ± 2
3 to

find the interval of convergence. That is, we need to determine whether the series

∞�

n=0

n3n

2n+1

�
−2

3

�n

=

∞�

n=0

(−1)n n

2
and

∞�

n=0

n3n

2n+1

�
2

3

�n

=

∞�

n=0

n

2

converge or diverge. Since

lim
n→∞

���(−1)n n

2

���
lim

n→∞
n

2



 =

1

2
lim

n→∞
n = ∞ �= 0 ,

both of these series diverge by the Divergence Test. Thus the interval of convergence of
the given series is

�
− 2

3 , 2
3

�
. �
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Quiz #22 Wednesday, 28 July, 2010. [15 minutes]

1. Find the Taylor series of f(x) = ln(x) at a = 1. [10]

Solution i. (Using Taylor’s formula.) We take the successive derivatives of f(x) = ln(x)
and evaluate them at a = 1:

n f (n)(x) f (n)(1)
0 ln(x) 0
1 x−1 1
2 −x−2 −1
3 2x−3 2
4 −6x−4 −6
5 24x−5 24
...

...
...

In general, when n ≥ 1, we have f (n)(x) = (−1)n−1(n − 1)!x−n and so f (n)(1) =
(−1)n−1(n − 1)!. Note that f (0)(1) = ln(1) = 0.

It follows that the Taylor series of f(x) = ln(x) at a = 1 is

∞�

n=1

f (n)(1)

n!
(x − 1)n =

∞�

n=1

(−1)n−1(n − 1)!

n!
(x − 1)n =

∞�

n=1

(−1)n−1

n
(x − 1)n

= (x − 1) − (x − 1)2

2
+

(x − 1)3

3
− (x − 1)4

4
+ · · · . �

Solution ii. (Using underhanded cunning.) Observe that
d

dx
ln(x) =

1

x
=

1

1 − (1 − x)
.

Using the formula for the sum of a geometric series, we get:

1

x
=

1

1 − (1 − x)
= 1 + (1 − x) + (1 − x)2 + (1 − x)3 + · · ·

= 1 − (x − 1) + (x − 1)2 − (x − 3)3 + · · · =
∞�

k=0

(−1)k(x − 1)k

By the uniqueness of Taylor series, this must be the Taylor series at a = 1 of
1

x
=

d

dx
ln(x).

Integrating this series term-by-term gives the Taylor series at a = 0 of ln(x), at least up
to a constant:

∞�

k=0

�
(−1)k(x − 1)k dx = C +

∞�

k=0

(−1)k(x − 1)k+1

k + 1

= C + (x − 1) − (x − 1)2

2
+

(x − 1)3

3
− (x − 1)4

4
− · · ·

Since this series should equal ln(1) = 0 when x = 1, we must have C = 0.

Thus the Taylor series of f(x) = ln(x) at a = 1 is
∞�

n=1

(−1)n−1

n
(x − 1)n. (Here we’ve

changed indices, with n = k + 1, to make it look like the previous solution.) �

20

185



Mathematics 1100Y – Calculus I: Calculus of one variable
Trent University, Summer 2010

Solutions to Test 1

1. Do any two (2) of a–c. [10 = 2 × 5 each]

a. Find the slope of the tangent line to y = tan(x) at x = 0.

Solution. The slope of the tangent line at a given point is given by evaluating the

derivative at the given point. In this case,
dy

dx
=

d

dx
tan(x) = sec2(x). At x = 0 this gives

sec2(0) =
1

cos2(0)
=

1

1
= 1, so the tangent line to y = tan(x) at x = 0 has slope 1. �

b. Use the limit definition of the derivative to compute f �(1) for f(x) = x2.

Solution. Here goes:

f �(1) = lim
h→0

f(1 + h) − f(1)

h

= lim
h→0

(1 + h)2 − 11

h

= lim
h→0

11 + 2 · 1 · h + h2 − 12

h

= lim
h→0

2h + h2

h

= lim
h→0

(2 + h) = 2 + 0 = 2 �

c. Use the ε− δ definition of limits to verify that lim
x→1

(2x − 1) = 1.

Solution. We need to show that for any ε > 0 there is a δ > 0 such that if |x − 1| < δ,
then |(2x − 1) − 1| < ε. Given a ε > 0, we reverse-engineer the δ > 0 we need:

|(2x − 1) − 1| < ε ⇐⇒ |2x − 2| < ε

⇐⇒ |2(x − 1)| < ε

⇐⇒ 2 |x − 1| < ε

⇐⇒ |x − 1| <
ε

2

Since each step above is reversible, it follows that that if δ = ε
2 , then |(2x − 1) − 1| < ε

whenever |x − 1| < δ = ε
2 . Thus lim

x→1
(2x − 1) = 1 by the ε− δ definition of limits. �
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2. Find dy
dx in any three (3) of a–d. [9 = 3 × 3 each]

a. y =
x

x + 1

Solution. Apply the Quotient Rule:

dy

dx
=

d

dx

�
x

x + 1

�
=

�
d
dxx
�
(x + 1) − x

�
d
dx (x + 1)

�

(x+)2
=

1(x + 1) − x1

(x+)2
=

1

(x+)2
�

b. x2 + y2 = 4

Solution i. Use implicit differentiation and the Chain Rule:

d

dx

�
x2 + y2

�
=

d

dx
4 =⇒ d

dx
x2 +

d

dx
t2 = 0 =⇒ 2x +

�
d

dy
y2

�
dy

dx
= 0

=⇒ 2x + 2y
dy

dx
= 0 =⇒ 2y

dy

dx
= −2x =⇒ dy

dx
=

−2x

2y
= −x

y
�

Solution ii. Solve for y and then differentiate using the Chain Rule. First,

x2 + y2 = 4 =⇒ y2 = 4 − x2 =⇒ y = ±
�

(4 − x2) .

Second,

dy

dx
=

d

dx
±
�

(4 − x2) =
1

±2
�

(4 − x2)
· d

dx

�
4 − x2

�
=

1

±2
�

(4 − x2)
· (0 − 2x)

=
−2x

±2
�

(4 − x2)
=

−x

±
�

(4 − x2)
= −x

y
. �

c. y =

� x

0

t cos(3t) dt

Solution. By the Fundamental Theorem of Calculus:

dy

dx
=

d

dx

� x

0

t cos(3t) dt = x cos(3t) �

d. y = ln
�
x3
�

Solution i. Simplify, then differentiate. First, y = ln
�
x3
�

= 3ln(x). Second,

dy

dx
=

d

dx
3ln(x) = 3 · 1

x
=

3

x
. �
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Solution ii. Differentiate using the Chain Rule, then simplify:

dy

dx
=

d

dx
ln
�
x3
�

=
1

x3
· d

dx
x3 =

1

x3
· 3x2 =

3

x
�

3. Do any two (2) of a–c. [10 = 2 × 5 each]

a. Explain why lim
x→0

x

|x| doesn’t exist.

Solution. Note that when x > 0, |x| = x, so
x

|x| = 1, and when x < 0, x = −|x|,

so
x

|x| = −1. It follows that lim
x→0−

x

|x| = lim
x→0−

−1 = −1 and lim
x→0+

x

|x| = lim
x→0+

1 = 1, so

lim
x→0

x

|x| can’t exist since −1 �= 1. �

b. A spherical balloon is being inflated at a rate of 1 m3/s. How is its radius changing at
the instant that it is equal to 2 m? [The volume of a sphere of radius r is V = 4

3πr3.]

Solution. On the one hand, we are given that
dV

dt
= 1; on the other hand, using the

Chain Rule,
dV

dt
=

d

dt

4

3
πr3 =

4

3
π

�
d

dr
r3

�
dr

dt
=

4

3
π3r2 dr

dt
= 4πr2 dr

dt
.

It follows that 1 =
dV

dt
= 4πr2 dr

dt
, so

dr

dt
=

1

4πr2
. Thus, at the instant that r = 2 m, we

have
dr

dt
=

1

4π22
=

1

16π
m/s. �

c. Use the Left-Hand Rule to find

� 3

1

x dx.

�
n−1�
i=0

i = 0 + 1 + · · · + (n − 1) = n(n−1)
2

�

Solution. Not letting the right hand know what the left hand is doing:

� 3

1

x dx = lim
n→∞

n−1�

i=0

3 − 1

n
·
�

1 + i
3 − 1

n

�
[Since our function is just f(x) = x.]

= lim
n→∞

n−1�

i=0

2

n

�
1 + i

2

n

�
= lim

n→∞
2

n

n−1�

i=0

�
1 + i

2

n

�

= lim
n→∞

2

n

��
n−1�

i=0

1

�
+

�
n−1�

i=0

i
2

n

��
= lim

n→∞
2

n

�
n +

�
2

n

n−1�

i=0

i

��

= lim
n→∞

2

n

�
n +

2

n
· n(n − 1)

2
i

�
= lim

n→∞
2

n
(n + (n − 1))

= lim
n→∞

2

n
(2n − 1) = lim

n→∞

�
4 − 2

n

�
= 4 − 0 = 4 �
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4. Let f(x) =
x2

x2 + 1
. Find the domain and all the intercepts, vertical and horizon-

tal asymptotes, and maxima and minima of f(x), and sketch its graph using this
information. [11]

Solution. We run through the checklist:

i. Domain. f(x) =
x2

x2 + 1
always makes sense because the denominator x2 + 1 ≥ 1 > 0

for all x. Thus the domain of f(x) is all of R; note that f(x) must also be continuous
everywhere. �

ii. Intercepts. f(0) = 0, so (0, 0) is the y-intercept. Since f(x) =
x2

x2 + 1
= 0 is only

possible when the numerator is 0, any x-intercepts occur when x2 = 0, i.e. when
x = 0. Thus (0, 0) is the only x-intercept, as well as the y-intercept. �

iii. Vertical asymptotes. Since f(x) is defined and continuous on all of R it has no vertical
asymptotes. (As noted in i above, this is because the denominator is never 0.) �

iv. Horizontal asymptotes. We check how f(x) behaves as x → ±∞:

lim
x→∞

x2

x2 + 1
= lim

x→∞
x2

x2 + 1
· 1/x2

1/x2
= lim

x→∞
1

1 + 1
x2

=
1

1 + 0+
= 1−

lim
x→−∞

x2

x2 + 1
= lim

x→−∞
x2

x2 + 1
· 1/x2

1/x2
= lim

x→−∞
1

1 + 1
x2

=
1

1 + 0+)
= 1−

Thus f(x) has x = 1 as a horizontal asymptote in both directions. Note that because
x2

x2+1 = 1
1+1/x2 < 1 for all x, f(x) approaches this asymptote from below in both

directions. �
v. Maxima and minima. Since f(x) is defined and continuous on all of R, we only have

to check any critical points to find any local maxima and minima. We first compute
the derivative:

f �(x) =
d

dx

�
x2

x2 + 1

�
=

�
d
dxx2

� �
x2 + 1

�
− x2

�
d
dx

�
x2 + 1

��

(x2 + 1)
2

=
2x
�
x2 + 1

�
− x2 (2x + 0)

(x2 + 1)
2

=
2x3 + 2x − 2x3

(x2 + 1)
2 =

2x

(x2 + 1)
2

Since the denominator is never 0, f �(x) is defined for all x and f �(x) = 0 only when
the numerator, 2x, is 0, i.e. when x = 0. Thus x = 0 is the only critical point. From
the behaviour around the critical point,

x (−∞, 0) 0 (0,∞)
f �(x) < 0 0 > 0
f(x) ↓ 0 ↑

,

f(0) = 0 is a local (and absolute!) minimum. Note that f(x) has no local maxima. �
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vi. Graph.

X: 4.860 Y: -2.860

This graph was drawn using a program called EdenGraph. �
Whew! �

Bonus. Find any inflection points of f(x) =
x2

x2 + 1
as well. [3]

Solution. We add one more item to the checklist above:

vii. Inflection points. Note that f �(x) is defined and differentiable for all x. We first
compute the second derivative:

f ��(x) =
d

dx
f �(x) =

d

dx

�
2x

(x2 + 1)
2

�
=

�
d
dx2x

� �
x2 + 1

�2 − 2x
�

d
dx

�
x2 + 1

�2�

�
(x2 + 1)

2
�2

=
2
�
x2 + 1

�2 − 2x
�
2
�
x2 + 1

�
· d

dx

�
x2 + 1

��

(x2 + 1)
4

=
2
�
x2 + 1

�2 − 2x
�
2
�
x2 + 1

�
· (2x + 0)

�

(x2 + 1)
4 =

2
�
x2 + 1

�2 − 2x
�
4x
�
x2 + 1

��

(x2 + 1)
4

=
2
�
x2 + 1

�2 − 8x2
�
x2 + 1

�

(x2 + 1)
4 =

2
�
x2 + 1

�
− 8x2

(x2 + 1)
3 =

2 − 6x2

(x2 + 1)
3

Since the denominator is never 0, f ��(x) is defined for all x and f ��(x) = 0 only when

the numerator, 2−6x2, is 0, i.e. when x = ± 1√
3
. Thus the potential inflection points

of f(x) are x = − 1√
3

and x =
1√
3
. From the behaviour around these points,

x
�
−∞,− 1√

3

�
− 1√

3

�
− 1√

3
, 1√

3

�
1√
3

�
1√
3
,∞
�

f ��(x) < 0 0 > 0 0 < 0
f �(x) ↓ ↑ ↓
f(x) concave down 1

4 concave up 1
4 concave down

,

it follows that f(x) has two inflection points, at x = − 1√
3

and x =
1√
3
. �

Bonus whew! �
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Mathematics 1100Y – Calculus I: Calculus of one variable
Trent University, Summer 2010

Solutions to Test 2

Instructions
• Show all your work. Legibly, please!
• If you have a question, ask it!
• Use the back sides of the test sheets for rough work or extra space.
• You may use a calculator and an aid sheet.

1. Compute any four (4) of the integrals in parts a-f. [16 = 4 × 4 each]

a.

�
1

4 − x2
dx b.

�
tan(x) dx c.

� 1

0

1√
x

dx

d.

�
x3 + x + 1

x2 + 1
dx e.

� π/4

−π/4

sec2(x) dx f.

�
xln(x) dx

Solution i to a. (Partial fractions.) Since
1

4 − x2
=

1

(2 − x)(2 + x)
=

A

2 − x
+

B

2 + x
,

we have 1 = A(2 + x) + B(2− x) = (A−B)x + (2A + 2B). This boils down to solving the
linear equations A − B = 0, i.e. A = B, and 2A + 2B = 1, i.e. A + B = 1

2 . Plugging the
first into the second gives 2A = 1

2 ; it follows that B = A = 1
4 . Now

�
1

4 − x2
dx =

1

4

�
1

2 − x
dx +

1

4

�
1

2 + x
dx

Substitute u = 2 − x, so du = −dx and dx = (−1) du, in the

first integral, and w = 2 + x, so dw = dx, in the second.

=
1

4

� −1

u
du +

1

4

�
1

w
dw = −1

4
ln(u) +

1

4
ln(w) + C

= −1

4
ln(2 − x) +

1

4
ln(2 + x) + C . �

Solution ii to a. (Trig substitution.) We’ll use the trigonometric substitution x =

2 sin(θ), so dx = 2 cos(θ) dθ. Note that it follows that sin(θ) = x
2 and cos(θ) =

�
1 − x2

4 .

Now

�
1

4 − x2
dx =

�
2 cos(θ)

4 − 4 sin2(θ)
dθ =

�
2 cos(θ)

4 cos2(θ)
dθ =

�
1

2 cos(θ)
dθ =

1

2

�
sec(θ) dθ

=
1

2
ln (sec(θ) + tan(θ)) + C =

1

2
ln

�
1

cos(θ)
+

sin(θ)

cos(θ)

�
+ C

=
1

2
ln


 1�

1 − x2

4

+
x
2�

1 − x2

4


+ C =

1

2
ln


 1 + x

2�
1 − x2

4


+ C . �
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Exercise: Show that solutions i and ii to a actually give the same answer.

Solution to b. We’ll use the definition of tan(x):

�
tan(x) dx =

�
sin(x)

cos(x)
dx

Substitute u = cos(x), so du = − sin(x) dx
and (−1) du = sin(x) dx.

=

� −1

u
du = −ln(u) + C = −ln (cos(x)) + C = ln

�
1

cos(x)

�
+ C

= ln (sec(x)) + C �

Solution to c. We’ll use the Power Rule:

� 1

0

1√
x

dx =

� 1

0

x−1/2 dx =
x1/2

1/2

����
1

0

= 2
√

x
��1
0

= 2
√

1 − 2
√

0 = 2 �

Exercise: Explain why the method used in c is not quite correct, even though it gives
the right answer.

Solution to d. Note that
x3 + x + 1

x2 + 1
is a rational function in which the degree of the

denominator is less that the degree of the numerator. Since x3 + x + 1 = x
�
x2 + 1

�
+ 1

(you can do long division to get this, or just use the “eyeball theorem”), it follows that

x3 + x + 1

x2 + 1
=

x
�
x2 + 1

�
+ 1

x2 + 1
= x +

1

x2 + 1
.

Hence

�
x3 + x + 1

x2 + 1
dx =

� �
x +

1

x2 + 1

�
dx =

�
x dx +

�
1

x2 + 1
dx

=
1

2
x2 + arctan(x) + C .

Those who haven’t yet memorized that the antiderivative of
1

x2 + 1
is arctan(x) can get it

with the trig substitution x = tan(θ). �

Solution to e.

� π/4

−π/4

sec2(x) dx = tan(x)|π/4
−π/4 = tan (π/4) − tan (−π/4) = 1 − (−1) = 2

since sin(π/4) = cos(π/4) = cos(−π/4) = 1√
2

and sin(−π/4) = − 1√
2
. �
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Solution to f. We’ll do this one using integration by parts; let u = ln(x) and v� = x, so

u� =
1

x
and v =

1

2
x2.

�
xln(x) dx = ln(x) · 1

2
x2 −

�
1

x
· 1

2
x2 dx =

1

2
x2ln(x) − 1

2

�
x dx

=
1

2
x2ln(x) − 1

2
· 1

2
x2 + C =

1

2
x2ln(x) − 1

4
x2 + C �

2. Do any two (2) of parts a-e. [12 = 2 × 6 each]

a. Compute

� 2

0

(x + 1) dx using the Right-hand Rule.

Solution. We plug into the formula and chug away:

� 2

0

(x + 1) dx = lim
n→∞

n�

i=1

2 − 0

n
·
��

0 + i
2 − 0

n

�
+ 1

�
= lim

n→∞

n�

i=1

2

n
·
�

i
2

n
+ 1

�

= lim
n→∞

2

n

n�

i=1

�
i
2

n
+ 1

�
= lim

n→∞
2

n

��
n�

i=1

i
2

n

�
+

�
n�

i=1

1

��

= lim
n→∞

2

n

��
2

n

n�

i=1

i

�
+ n

�
= lim

n→∞
2

n

�
2

n
· n(n + 1)

2
+ n

�

= lim
n→∞

2

n
((n + 1) + n) = lim

n→∞
2

n
(2n + 1)

= lim
n→∞

�
4 +

2

n

�
= 4 + 0 = 4 ,

since 2
n → 0 as n → ∞. �
b. Find the area of the region bounded by y = 2 + x and y = x2 for −1 ≤ x ≤ 1.

Solution. A little experimentation with values at different points or a very quick sketch
suffices to show that the two curves touch at x = −1 and that 2 + x > x2 until somewhere
to the right of x = 1. Thus the area between the two curves for −1 ≤ x ≤ 1 is:

� 1

−1

�
2 + x − x2

�
dx =

�
2x +

x2

2
− x3

3

�����
1

−1

=

�
2 · 1 +

12

2
− 13

3

�
−
�

2 · (−1) +
(−1)2

2
− (−1)3

3

�

=

�
2 +

1

2
− 1

3

�
−
�
−2 +

1

2
+

1

3

�

=
13

6
− −5

6
=

18

6
= 3 �
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c. Without actually computing

� 10/π

0

arctan(x) dx, find as small an upper bound

as you can on the value of this integral.

Solution. Note that arctan(x) <
π

2
for all x. (Just look at the graph!) It follows that

� 10/π

0

arctan(x) dx <

� 10/π

0

π

2
dx =

π

2
x
���
10/π

0
=

π

2
· 10

π
− π

2
· 0 = 5 .

Good enough for me! �
d. Compute the arc-length of the curve y = ln (cos(x)), 0 ≤ x ≤ π/6.

Solution. We plug into the arc-length formula and chug away. Note that

dy

dx
=

1

cos x
· d

dx
cos(x) =

1

cos x
· (− sin(x)) = − sin(x)

cos x
= − tan(x) ,

and that cos(π/6) = 1
2 and sin(π/6) =

√
3

2 , so sec(π/6) = 2 and tan(π/6) =
√

3. Then

arc length =

� π/6

0

�
1 + (− tan(x))

2
dx =

� π/6

0

�
1 + tan2(x) dx

=

� π/6

0

�
sec2(x) dx =

� π/6

0

sec(x) dx = ln (sec(x) + tan(x))|π/6
0

= ln (sec(π/6) + tan(π/6)) − ln (sec(0) + tan(0))

= ln
�
2 +

√
3
�
− ln (1 + 0) = ln

�
2 +

√
3
�

since ln(1) = 0. �
Note: If you want to know where y = ln (cos(x)) came from, look at the solution to 1b.

e. Give a example of a function f(x) such that f(x) = 1 +

� x

0

f(t) dt for all x.

Solution. Suppose f(x) satisfied the given equation. Then, by the Fundamental Theorem
of Calculus, we would have that

f �(x) =
d

dx

�
1 +

� x

0

f(t) dt

�
= 0 + f(x) = f(x) .

One well-known function satisfying this condition is f(x) = 0, but it fails to satisfy the
original equation since

0 �= 1 = 1 + 0 = 1 +

� 0

0

0 dt .

The other well-known function satisfying f �(x) = f(x) is f(x) = ex. Since

e0 = 1 = 1 + 0 = 1 +

� 0

0

et dt ,

it has chance. We verify that it does satisfy the original equation:

1 +

� x

0

et dt = 1 + et
��x
0

= 1 +
�
ex − e0

�
= 1 + ex − 1 = ex �
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3. Do one (1) of parts a or b. [12]

a. Sketch the solid obtained by rotating the region bounded by y =
√

x and y = x,
where 0 ≤ x ≤ 1, about the y-axis, and find its volume.

Solution i to a. (Disks/Washers) Note that we have x ≤ √
x for 0 ≤ x ≤ 1. Here’s a

sketch of the solid, with a typical “washer” cross-section in the picture.

Considering the sketch, it is easy to see that the washer at height y has an out radius
of R = x = y and an inner radius of r = x = y2 (since y =

√
x), and hence area

π
�
R2 − r2

�
= π

�
y2 −

�
y2
�2�

= π
�
y2 − y4

�
. Since we rotated the region about the y-axis,

the washers are stacked vertically, so we must integrate over y to get the volume of the
solid. Note that 0 ≤ y ≤ 1 over the given region.

Volume =

� 1

0

π
�
R2 − r2

�
dy = π

� 1

0

�
y2 − y4

�
dy = π

�
y3

3
− y5

5

�����
1

0

= π

�
13

3
− 15

5

�
− π

�
03

3
− 05

5

�
= π

�
1

3
− 1

5

�
− π(0 − 0) =

2

15
π �

Solution ii to a. (Cylindrical shells) Note that we have x ≤ √
x for 0 ≤ x ≤ 1. Here’s

a sketch of the solid, with a typical cylindrical shell in the picture.

5
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Considering the sketch, it is easy to see that the cylinder centred on the y-axis with
radius r = x has height h =

√
x − x, and hence area 2πrh = 2πx (

√
x − x). Since we

rotated the region about the y-axis, the cylinders are vertical and so nested horizontally,
so we must integrate over x to get the volume of the solid.

Volume =

� 1

0

2πrh dx = 2π

� 1

0

x
�√

x − x
�

dx = 2π

� 1

0

�
x3/2 − x2

�
dx

= 2π

�
x5/2

5/2
− x3

3

�����
1

0

= 2π

�
15/2

5/2
− 13

3

�
− 2π

�
05/2

5/2
− 03

3

�

= 2π

�
2

5
− 1

3

�
− 2π(0 − 0) = 2π

1

15
=

2

15
π �

b. Sketch the cone obtained by rotating the line y = 3x, where 0 ≤ x ≤ 2, about
the x-axis, and find its surface area.

Solution. Here’s a sketch of the cone:

The cross-section of the cone at x has radius r = y = 3x and
dy

dx
= 3. Hence

Surface Area =

� 2

0

2πr

�
1 +

�
dy

dx

�2

dx = 2π

� 2

0

3x
�

1 + 32 dx

= 6
√

10π

� 2

0

x dx = 6
√

10π
x2

2

����
2

0

= 6
√

10π

�
22

2
− 02

2

�

= 6
√

10π(2 − 0) = 12
√

10π . �

[Total = 40]
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Mathematics 1100Y – Calculus I: Calculus of one variable
Trent University, Summer 2010

Solutions to the Final Examination

Part I. Do all three (3) of 1–3.

1. Compute
dy

dx
as best you can in any three (3) of a–f. [15 = 3 × 5 each]

a. x2 + 3xy + y2 = 23 b. y = ln (tan(x)) c. y =

� 3

x

ln (tan(t)) dt

d. y =
ex

ex − e−x
e.

x = cos(2t)
y = sin(3t)

f. y = (x + 2)ex

Solutions to 1. Using various tricks!

a. Implicit differentiation and some algebra:

x2 + 3xy + y2 = 23 =⇒ d

dx

�
x2 + 3xy + y2

�
=

d

dx
23

=⇒ 2x + 3y + 3x
dy

dx
+ 2y

dy

dx
= 0

=⇒ (2x + 3y) + (3x + 2y)
dy

dx
= 0

=⇒ dy

dx
= −2x + 3y

3x + 2y
�

b. Chain Rule:

dy

dx
=

d

dx
ln (tan(x)) =

1

tan(x)
· d

dx
tan(x) = cot(x) sec2(x) �

c. The Fundamental Theorem of Calculus:

dy

dx
=

d

dx

� 3

x

ln (tan(t)) dt =
d

dx
(−1)

� x

3

ln (tan(t)) dt = −ln (tan(x)) �

d. Quotient Rule and some algebra with ex:

dy

dx
=

d

dx

�
ex

ex − e−x

�
=

�
d
dxex

�
(ex − e−x) − ex d

dx (ex − e−x)

(ex − e−x)
2

=
ex (ex − e−x) − ex (ex + e−x)

(ex − e−x)
2 =

e2x − e0 − e2x − e0

(ex − e−x)
2

=
−2

(ex − e−x)
2 Note that

d

dx
e−x = −e−x. �

1
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e. As usual with parametric functions:

dy

dx
=

dy
dt
dx
dt

=
d
dt cos(2t)
d
dt sin(3t)

=
sin(2t) · (−2)

cos(3t) · 3
= − 2 sin(2t)

3 cos(3t)

. . . and there’s not much one can try to do to simplify this that doesn’t make it worse. �
f. Product Rule:

dy

dx
=

d

dx
((x + 2)ex) =

�
d

dx
(x + 2)

�
·ex +(x+2) · d

dx
ex = 1ex +(x+2)ex = (x+3)ex �

2. Evaluate any three (3) of the integrals a–f. [15 = 3 × 5 each]

a.

� π/4

−π/4

tan(x) dx b.

�
1

t2 − 1
dt c.

� π

0

x cos(x) dx

d.

� �
w2 + 9 dw e.

� e

1

ln(x) dx f.

�
ex

e2x + 2ex + 1
dx

Solutions to 2. Using various tricks!

a. We’ll write tan(x) =
sin(x)

cos(x)
and take it from there.

� π/4

−π/4

tan(x) dx =

� π/4

−π/4

sin(x)

cos(x)
dx

Substitute u = cos(x), so du = − sin(x) dx and

(−1) du = sin(x) dx. Also,
x −π/4 π/4

u 1/
√

2 1/
√

2
.

=

� 1/
√

2

1/
√

2

−1

u
du = 0 �

b. This one can be done with the trig substitution t = tan(θ), but that approach requires
integrating csc(θ) along the way. We will use partial fractions instead. Note first that
t2 − 1 = (t − 1)(t + 1). Then

1

t2 − 1
=

A

t − 1
+

B

t + 1
,

which requires that 1 = A(t + 1) + B(t − 1) = (A + B)t + (A − B), i.e. A + B = 0 and
A − B = 1. Adding the last two equations gives 2A = 1, so A = 1

2 , and substituting back
into either equation and solving for B gives B = − 1

2 . Hence
�

1

t2 − 1
dt =

� �
1/2

t − 1
− 1/2

t + 1

�
dt

=
1

2

�
1

t − 1
dt − 1

2

�
1

t + 1
dt

=
1

2
ln(t − 1) − 1

2
ln(t + 1) + C =

1

2
ln

�
t − 1

t + 1

�
+ C . �

2
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c. This is a job for integration by parts. We’ll use u = x and v� = cos(x), so u� = 1 and
v = sin(x). Thus

� π

0

x cos(x) dx =

� π

0

uv� dx = uv|π0 −
� π

0

u�v dx

= x sin(x)|π0 −
� π

0

sin(x) dx

= π sin(π) − 0 sin(0) − (− cos(x))|π0
= π · 0 − 0 · 0 + cos(π) − cos(0) = 0 − 0 − 1 − 1 = −2 . �

d. This is a job for a trig substitution, namely w = 3 tan(θ), so dw = 3 sec2(θ) dθ.

� �
w2 + 9 dw =

� �
9 tan2(θ) + 9 · 3 sec2(θ) dθ

=

�
3
�

tan2(θ) + 1 · 3 sec2(θ) dθ

= 9

� �
sec2(θ) · sec2(θ) dθ = 9

�
sec3(θ) dθ

This last we look up rather than do it from scratch . . .

=
9

2
sec(θ) tan(θ) +

9

2
ln (sec(θ) + tan(θ)) + C

= Substituting back, tan(θ) =
w

3
and sec(θ) =

�
1 +

w2

9
.

=
9

2
· w

3

�
1 +

w2

9
+

9

2
ln

�
w

3
+

�
1 +

w2

9

�
+ C

=
3w

2

�
1 +

w2

9
+

9

2
ln

�
w

3
+

�
1 +

w2

9

�
+ C �

e. Integration by parts again, with u = ln(x) and v� = 1, so u� =
1

x
and v = x.

� e

1

ln(x) dx =

� e

1

uv� dx = uv|e1 −
� e

1

u�v dx

= xln(x)|e1 −
� e

1

1

x
· x dx

= eln(e) − 1ln(1) −
� e

1

1 dx

= e · 1 − 1 · 0 − x|e1
= e − (e − 1) = e − e + 1 = 1 �

3
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f. Substitute u = ex, so du = ex dx and e2x = (ex)
2

= u2, and see what happens:

�
ex

e2x + 2ex + 1
dx =

�
1

u2 + 2u + 1
du =

�
1

(u + 1)2
du

Substitute again, with w = u + 1 and dw = du.

=

�
1

w2
dw =

−2

w3
+ C

Now we undo the substitutions.

= − 2

(u + 1)3
+ C = − 2

(ex + 1)
3 + C �

3. Do any five (5) of a–i. [25 = 5 × 5 ea.]

a. Find the volume of the solid obtained by rotating the region bounded by y =
√

x,
0 ≤ x ≤ 4, the x-axis, and x = 4, about the x-axis.

Solution. Here’s a crude sketch of the solid:

We’ll use the disk/washer method. The disk at x has radius R =
√

x− 0 =
√

x; since
it is a disk rather than a washer, we need not worry about an inner radius. The the volume
of the solid is

� 4

0

πR2 dx =

� 4

0

π
�√

x
�2

dx = π

� 4

0

x dx

= π
x2

2

����
4

0

= π
42

2
− π

02

2
= 8π − 0π = 8π ,

cube units of whatever sort. �

b. Use the ε− δ definition of limits to verify that lim
x→1

3x = 3.

Solution. We need to show that for any ε > 0 there is a δ > 0 such that, for all x, if
|x − 1| < δ, then |3x − 3| < ε.

4
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Given an ε > 0, we obtain the required δ > 0 with some reverse-engineering:

|3x − 3| < ε ⇐⇒ |3(x − 1)| < ε ⇐⇒ |x − 1| <
ε

3

Since each step is reversible, it follows that if we let δ = ε
3 , then |3x − 3| < ε.

c. Find the Taylor series of f(x) =
x2

1 − x2
at a = 0 without taking any derivatives.

Solution. Recall that the formula for the sum of the geometric series
∞�

n=0
arn with first

term s and common ratio r < 1 is
s

1 − r
. If we set s = x2 and r = x2, it now follows that

x2

1 − x2
=

∞�

n=0

x2
�
x2
�n

=
∞�

n=0

x2n+2 ,

at least when
��x2
�� < 1, i.e. when |x| < 1. By the uniqueness of power series representations,

it follows that
∞�

n=0
x2n+2 is the Taylor series at 0 of f(x) =

x2

1 − x2
. �

d. Sketch the polar curve r = 1 + sin(θ) for 0 ≤ θ ≤ 2π.

Solution. The simplest way to do this is to compute some points on the curve and
connect up the dots.

θ 0 π/6 π/4 π/3 π/2 2π/3 3π/4 5π/6 π

sin(θ) 0 1/2 1/
√

2
√

3/2 1
√

3/2 1/
√

2 1/2 0

r 1 3/2 1+1/
√

2 1+
√

3/2 2 1+
√

3/2 1+1/
√

2 3/2 1

7π/6 5π/4 4π/3 3π/2 5π/3 7π/4 11π/6 2π

−1/2 −1/
√

2 −
√

3/2 −1 −
√

3/2 −1/
√

2 −1/2 0

1/2 1−1/
√

2 1−
√

3/2 0 1−
√

3/2 1−1/
√

2 1/2 1

Here’s a rough sketch of the curve:

�

5
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e. Use the limit definition of the derivative to compute f �(1) for f(x) = x2.

Solution. Here goes:

f �(1) = lim
h→0

f(1 + h) − f(1)

h
= lim

h→0

(1 + h)2 − 12

h

= lim
h→0

1 + 2h + h2 − 1

h
= lim

h→0

2h + h2

h

= lim
h→0

(2 + h) = 2 �

f. Use the Right-hand Rule to compute the definite integral

� 2

1

x

2
dx.

Solution. We plug into the Right-hand Rule formula and chug away:

� 2

1

x

2
dx = lim

n→∞

n�

i=1

2 − 1

n
· 1 + i 2−1

n

2
= lim

n→∞
1

2n

n�

i=1

�
1 +

i

n

�

= lim
n→∞

1

2n

��
n�

i=1

1

�
+

�
1

n

n�

i=1

i

��
= lim

n→∞
1

2n

�
n +

1

n
· n(n + 1)

2

�

= lim
n→∞

�
1

2n
· n +

1

2n
· n + 1

2

�
= lim

n→∞

�
1

2
+

1

4
+

1

4n

�

=
3

4
+ 0 =

3

4
�

g. Determine whether the series
∞�

n=2

(−1)n

ln(n)
converges absolutely, converges condi-

tionally, or diverges.

Solution. The series converges by the Alternating Series Test: First,

lim
n→∞

|an| = lim
n→∞

����
(−1)n

ln(n)

���� = lim
n→∞

1

ln(n)
= 0 ,

since ln(n) → ∞ as n → ∞. Second, since ln(n) is an increasing function of n, we have
that

|an+1| =

����
(−1)n+1

ln(n + 1)

���� =
1

ln(n + 1)
<

1

ln(n)
=

����
(−1)n

ln(n)

���� = |an| .

Third, since ln(n) > 0 when n ≥ 2 and (−1)n alternates sign, this is an alternating series.
On the other hand, the Comparison Test shows the series does not converge absolutely.

Note that n > ln(n) for n ≥ 2, so

1

n
<

1

ln(n)
=

����
(−1)n

ln(n)

���� .

6
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Since the harmonic series

∞�

n=2

1

n
diverges, it follows that the series

∞�

n=2

����
(−1)n

ln(n)

���� diverges as

well. Thus the given series does not converge absolutely.

Since it converges, but not absolutely,

∞�

n=2

(−1)n

ln(n)
converges conditionally. �

h. Find the radius of convergence of the power series
∞�

n=0

n2

πn
xn.

Solution. We will use the Ratio Test.

lim
n→∞

����
an+1

an

���� = lim
n→∞

�����
(n+1)2

πn+1 xn+1

n2

πn xn

����� = lim
n→∞

����
(n + 1)2

n2
· x

π

����

=
|x|
π

lim
n→∞

n2 + 2n + 1

n2
=

|x|
π

lim
n→∞

�
1 +

2

n
+

1

n2

�

=
|x|
π

(1 + 0 + 0) =
|x|
π

It follows by the Ratio Test that
∞�

n=0

n2

πn
xn converges if

|x|
π

< 1, i.e. if |x| < π, and diverges

if
|x|
π

> 1, i.e. if |x| > π, so the radius of convergence of the series is R = π. �

i. Compute the arc-length of the polar curve r = θ, 0 ≤ θ ≤ 1.

Solution. We plug the given curve into the polar version of the arc-length formula and

chug away. Note that
dr

dθ
= 1 if r = θ.

Length =

� 1

0

�
r2 +

�
dr

dθ

�2

dθ =

� 1

0

�
θ2 + 12 dθ =

� 1

0

�
θ2 + 1 dθ

We use the trig substitution θ = tan(t),

so dθ = sec2(t) dt and
θ 0 1
t 0 π/4

=

� π/4

0

�
tan2(t) + 1 sec2(t) dt =

� π/4

0

�
sec2(t) sec2(t) dt =

� π/4

0

sec3(t) dt

As in the solution to 2d, we look this up.

=
1

2
sec(t) tan(t) +

1

2
ln (sec(t) + tan(t))

����
π/4

0

=
1

2
sec(π/4) tan(π/4) +

1

2
ln (sec(π/4) + tan(π/4))

− 1

2
sec(0) tan(0) − 1

2
ln (sec(0) + tan(0))

=
1

2
·
√

2 · 1 +
1

2
ln
�√

2 + 1
�
− 1

2
· 1 · 0 − 1

2
ln (1 + 0) =

1√
2

+
1

2
ln
�√

2 + 1
�

�

7
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Part II. Do any two (2) of 4–6.

4. Find the domain, all maximum, minimum, and inflection points, and all vertical and

horizontal asymptotes of f(x) = e−x2

, and sketch its graph. [15]

Solution. We’ll run through the usual checklist and then graph f(x) = e−x2

.

i. Domain. Note that both g(x) = ex and h(x) = −x2 are defined and continuous for all

x. It follows that f(x) = g (h(x)) = e−x2

is also defined and continuous for all x. It
follows that the domain of f(x) is all of R and that it has no vertical asymptotes. �

ii. Intercepts. Since g(x) = ex is never 0, f(x) = e−x2

can never equal 0 either, so it has

no x-intercepts. For the y-intercept, simply note that f(0) = e−02

= e0 = 1. �
iii. Asymptotes. As noted above, f(x) = e−x2

has no vertical asymptotes, so we only
need to check for horizontal asymptotes.

lim
x→∞

e−x2

= lim
x→∞

1

ex2 = 0 and lim
x→−∞

e−x2

= lim
x→−∞

1

ex2 = 0 ,

since ex2 → ∞ as x2 → ∞, which happens as x → ±∞. Thus f(x) = e−x2

has the
horizontal asymptote y = 0 in both directions. �

iv. Maxima and minima. f �(x) = e−x2 d

dx

�
−x2

�
= −2xe−x2

, which equals 0 exactly

when x = 0 because −2e−x2 �= 0 for all x. Note that this is the only critical point.
Since e−x2

> 0 for all x, f �(x) = −2xe−x2

> 0 when x < 0 and < 0 when x > 0,

so f(x) = e−x2

is increasing for x < 0 and decreasing for x > 0. Thus x = 0 is an
(absolute!) maximum point of f(x), which has no minimum points. �

v. Inflection points.

f ��(x) =
d

dx

�
−2xe−x2

�
= −2e−x2 − 2x

d

dx

�
−x2

�

= −2e−x2 − 2x ·
�
−2xe−x2

�
=
�
4x2 − 2

�
e−x2

,

which equals which equals 0 exactly when 4x2 − 2 = 0, i.e. when x = ± 1√
2
, because

−2e−x2 �= 0 for all x. Since e−x2

> 0 for all x, f ��(x) =
�
4x2 − 2

�
e−x2

> 0 exactly
when 4x2 − 2 > 0, i.e. when |x| > 1√

2
, and is < 0 exactly when 4x2 − 2 < 0, i.e. when

|x| < 1√
2
. Thus f(x) = e−x2

is concave up on
�
−∞,− 1√

2

�
∪
�

1√
2
,∞
�

and concave

down on
�
− 1√

2
, 1√

2

�
. Thus f(x) = e−x2

has two inflection points, at x = ± 1√
2
. �

v. Graph. f(x) = e−x2

is essentially the classic “bell curve” without some small ad-
justments that are made to have the total area under the “bell curve” be equal to
1.
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Exp(-x^2)

This graph was generated with the command tt Plot2D(Exp(-xˆ2),-10:10) in Yacas

(“Yet Another Computer Algebra System”). �

That’s all for this one, folks! �

5. Find the area of the surface obtained by rotating the curve y = tan(x), 0 ≤ x ≤ π

4
,

about the x-axis. [15]

Solution. This is, quite unintentionally, by far the hardest problem on the exam. [I
hallucinated my way to a fairly simple “solution” when making up the exam, and the error
survived all my checks . . . ] Here’s a crude sketch of the surface:

Note that
dy

dx
=

d

dx
tan(x) = sec2(x). Plugging this into the appropriate surface area

9
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formula gives:

� π/4

0

2πy

�
1 +

�
dy

dx

�2

dx =

� π/4

0

2π tan(x)
�

1 + sec4(x) dx

Let u = sec2(x), so du = 2 sec( x) tan(x) dx and

2 tan(x) dx =
1

sec2(x)
du =

1

u
du; also

x 0 π/4
u 1 2

.

= π

� 2

1

�
1 + u2 · 1

u
du = π

� 2

1

1

u

�
1 + u2 du

Now let u = tan(θ), so du = sec2(θ) dθ and

u 1 2
θ π/4 arctan(2)

.

=

� arctan(2)

π/4

1

tan(θ)

�
1 + tan2(θ) sec2(θ) dθ

=

� arctan(2)

π/4

sec3(θ)

tan(θ)
dθ =

� arctan(2)

π/4

1

sin(θ) cos2(θ)
dθ

At this point – if they even got this far – most people would get stuck. We have

one last desperate option, though, namely the Weierstrauss substitution: t = tan

�
θ

2

�
,

so cos(θ) =
1 − t2

1 + t2
, sin(θ) =

2t

1 + t2
, and dθ =

2

1 + t2
dt. The limits get pretty ugly here,

though:
θ π/4 arctan(2)
t tan(π/8) tan (arctan(2)/2)

. [There may be some way to simplify the limits,

but by now I can’t be bothered . . . ] Resuming integration:

� π/4

0

2πy

�
1 +

�
dy

dx

�2

dx =

� arctan(2)

π/4

1

sin(θ) cos2(θ)
dθ

=

� tan(arctan(2)/2)

tan(π/8)

1 + t2

2t
·
�

1 + t2

1 − t2

�2

· 2

1 + t2
dt

After some algebra, which I’ll let you do, we get

=

� tan(arctan(2)/2)

tan(π/8)

t4 + 2t2 + 1

t(t − 1)2(t + 1)2
dt

. . . which we can do using partial fractions.

10

206



To continue we need to find the constants A–E such that

t4 + 2t2 + 1

t(t − 1)2(t + 1)2
=

A

t
+

B

(t − 1)2
+

C

t − 1
+

D

(t + 1)2
+

E

t + 1

=

A(t − 1)2(t + 1)2 + Bt(t + 1)2

+ Ct(t − 1)(t + 1)2 + Dt(t − 1)2

+ Et(t − 1)2(t + 1)

t(t − 1)2(t + 1)2

=

(A + C + E)t4 + (B + C + D − E)t3

+ (−2A + 2B − C − 2D − E)t2

+ (B − C + D + E)t + A

t(t − 1)2(t + 1)2
,

that is, satisfying the system of linear equations:

A + C + E = 1
B + C + D − E = 0

− 2A + 2B − C − 2D − E = 2
B − C + D + E = 0

A = 1

Solving this [more work for you!] gives us: A = 1, B = 1, C = 0, D = −1, and E = 0.
Resuming integration again [and leaving some more routine work for you]:

� π/4

0

2πy

�
1 +

�
dy

dx

�2

dx =

� tan(arctan(2)/2)

tan(π/8)

t4 + 2t2 + 1

t(t − 1)2(t + 1)2
dt

=

� tan(arctan(2)/2)

tan(π/8)

�
1

t
+

1

(t − 1)2
− 1

(t + 1)2

�
dt

=

�
ln(t) − 1

t − 1
+

1

t + 1

�����
tan(arctan(2)/2)

tan(π/8)

=

�
ln (tan (arctan(2)/2)) − 1

tan (arctan(2)/2) − 1

+
1

tan (arctan(2)/2) + 1

�

−
�

ln (tan(π/8)) − 1

tan(π/8) − 1
+

1

tan(π/8) + 1

�

Simplify if you can — and dare! �
6. Find the volume of the solid obtained by rotating the region below y = 1 − x2,

−1 ≤ x ≤ 1, and above the x-axis about the line x = 2. [15]
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Solution. Here’s a crude sketch of the solid:

We will use the method of cylindrical shells to find the volume of this solid. Note that
the shell at x, where −1 ≤ x ≤ 1, has radius r = 2 − x and height h = y − 0 = 1 − x2.
Plugging this into the formula for the volume gives:

� 1

−1

2πrh dx =

� 1

−1

2π(2 − x)
�
1 − x2

�
dx

= 2π

� 1

−1

�
2 − x − 2x2 + x3

�
dx

= 2π

�
2x − 1

2
x2 − 2

3
x3 +

1

4
x4

�����
1

−1

= 2π

�
2 − 1

2
− 2

3
+

1

4

�
− 2π

�
−2 − 1

2
+

2

3
+

1

4

�

= 2π · 13

12
− 2π · −19

12
= 2π · 32

12
=

16

3
π �

Part III. Do one (1) of 7 or 8.

7. Do all three (3) of a–c.

a. Use Taylor’s formula to find the Taylor series of ex centred at a = −1. [7]

Solution. If f(x) = ex, then f �(x) = ex, f ��(x) − ex, and so on; it is pretty easy to see

that f (n)(x) = ex for all n ≥ 0. It follows that f (n)(−1) = e−1 =
1

e
for all n ≥ 0. Hence

the Taylor series of ex centred at a = −1 is:

∞�

n=0

f (n)(−1)

n!
(x − (−1))

n
=

∞�

n=0

e−1

n!
(x + 1)n =

∞�

n=0

1

n!e
(x + 1)n �

b. Determine the radius and interval of convergence of this Taylor series. [4]

12
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Solution. We’ll use the Ratio Test:

lim
n→∞

����
an+1

an

���� = lim
n→∞

�����

1
(n+1)!e (x + 1)n+1

1
n!e (x + 1)n

����� = lim
n→∞

����
1

n + 1
(x + 1)

����

= |x + 1| lim
n→∞

1

n + 1
= |x + 1| · 0 = 0

It follows that the series converges for any x whatsoever, i.e. it has radius of convergence
R = ∞ and hence has interval of convergence (−∞,∞). �

c. Find the Taylor series of ex centred at a = −1 using the fact that the Taylor

series of ex centred at 0 is

∞�

n=0

xn

n!
= 1 + x +

x2

2
+

x3

6
+

x4

24
+ · · · . [4]

Solution. We plug x − (−1) = x + 1 in for x in ex and in its Taylor series:

ex+1 =
∞�

n=0

(x + 1)n

n!

Since ex+1 = exe, it follows that

ex =
1

e

∞�

n=0

(x + 1)n

n!
=

∞�

n=0

(x + 1)n

n!e
.

Since Taylor series are unique this must be the Taylor series of ex centred at a = −1. �

8. Do all three (3) of a–c. You may assume that the Taylor series of f(x) = ln(1 + x)

centred at a = 0 is

∞�

n=1

(−1)n+1

n
xn = x − x2

2
+

x3

3
− x4

4
+

x5

5
− x6

6
+ · · · .

a. Find the radius and interval of convergence of this Taylor series. [6]

Solution. We’ll use the Ratio Test to find the radius of convergence.

lim
n→∞

����
an+1

an

���� = lim
n→∞

������

(−1)n+2

n+1 xn+1

(−1)n+1

n xn

������
= lim

n→∞

����−
n

n + 1
x

����

= |x| lim
n→∞

n

n + 1
= |x| lim

n→∞
n/n

(n + 1)/n

= |x| lim
n→∞

1

1 + 1/n
= |x| · 1

1 + 0
= |x| · 1 = |x|

It follows by the Ratio Test that the given Taylor series converges absolutely when |x| < 1
and diverges when |x| > 1, so the radius of convergence is R = 1.

13
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To determine the interval of convergence, we need to check what happens at x =
±R = ±1. Plugging in x = −1, the series becomes

∞�

n=1

(−1)n+1

n
(−1)n =

∞�

n=1

−1

n
= −

∞�

n=1

1

n

(i.e. the negative of the harmonic series), which diverges by the p-Test. Plugging in x = 1,
the series becomes

∞�

n=1

(−1)n+1

n
1n =

∞�

n=1

(−1)n+1

n
= 1 − 1

2
+

1

3
− 1

4
+

1

5
− · · ·

(i.e. the alternating harmonic series), which converges by the Alternating Series Test, as
we’ve seen in class. Therefore the interval of convergence of the given Taylor series is
(−1, 1]. �

b. Use this series to show that ln

�
3

2

�
=

1

2
− 1

8
+

1

24
− 1

64
+ · · · =

∞�

n=1

(−1)n+1

n2n
. [3]

Solution. Since a function is equal to its Taylor series within the latter’s radius of
convergence and

�� 3
2 − 1

�� = 1
2 < 1, we must have

ln

�
3

2

�
= ln

�
1 +

1

2

�
=

∞�

n=1

(−1)n+1

n

�
1

2

�n

=
∞�

n=1

(−1)n+1

n2n
,

as desired. �

c. Find an n such that Tn

�
1

2

�
=

1

2
− 1

8
+

1

24
− 1

64
+ · · · + (−1)n+1

n2n
is guaranteed

to be within 0.01 =
1

100
of ln

�
3

2

�
. [6]

Solution. We need to find an n such that

����ln
�

3

2

�
− Tn

�
1

2

����� =
�����

∞�

i=n+1

(−1)i+1

i2i

����� < 0.01 .

One could, with some effort, accomplish this by considering the nth remainder term,
Rn

�
1
2

�
, of the given Taylor series, but in this case there is a simpler approach available.

Note that
∞�

n=1

(−1)n+1

n2n
is an alternating series. It follows from the proof of the Alternating

Series Test that �����
∞�

i=n+1

(−1)i+1

i2i

����� <
����

(−1)n+2

(n + 1)2n+1

���� ,

14
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so all we need to do is ensure that

����
(−1)n+2

(n + 1)2n+1

���� =
1

(n + 1)2n+1
< 0.01 =

1

100
. A little

brute force goes a long way here:

n 1 2 3 4 5 · · ·
1

(n+1)2n+1
1
8

1
24

1
64

1
160

1
768 · · ·

Thus n = 4 does the job. (Note that any larger n would serve too.) �
[Total = 100]

Part IV - Something different. Bonus!

eiπ. Write a haiku touching on caclulus or mathmatics in general. [2]

haiku?

seventeen in three:
five and seven and five of

syllables in lines

I hope that you enjoyed the course. Enjoy the rest of the summer!

15
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Mathematics 1101Y – Calculus I: functions and calculus of one variable
Trent University, 2010–2011

Solutions to the Quizzes

Quiz #1. Friday, 24 Monday, 27 September, 2010. (10 minutes)

1. Find the location of the tip of the parabola y = 2x2 + 2x − 12, as well as its x- and
y-intercepts. [5]

Solution. Note that since x2 has a positive coefficient, this parabola opens upwards.
To find the location of the tip of the parabola, we complete the square in the quadratic

expression defining the parabola:

y = 2x2 + 2x − 12

= 2
�
x2 + x

�
− 12

= 2

�
x2 + 2

1

2
x +

�
1

2

�2

−
�

1

2

�2
�
− 12

= 2

�
x2 + 2

1

2
x +

�
1

2

�2
�
− 2

�
1

2

�2

− 12

= 2

�
x +

1

2

�2

− 1

2
− 12

= 2

�
x +

1

2

�2

− 25

2

It follows that the tip of the parabola occurs when x + 1
2 = 0, i.e. when x = − 1

2 , at which
point y = − 25

2 . Thus thus the tip of the parabola is at the point
�
− 1

2 ,− 25
2

�
.

To find the y-intercept of the parabola, we simply plug x = 0 into the quadratic
expression defining the parabola:

y = 2 · 02 + 2 · 0 − 12 = 0 + 0 − 12 = 12

Thus the y-intercept of the parabola is the point (0,−12).
To find the x-intercept(s) of the parabola, we apply the quadratic formula to find the

roots of the quadratic expression defining the parabola: 2x2 + 2x − 12 = 0 exactly when

x =
−2 ±

�
22 − 4 · 2 · (−12)

2 · 2
=

−2 ±
�

4 − (−96)

4

=
−2 ±

√
100

4
=

−2 ± 10

4
=

−1 ± 5

2
,

i.e. exactly when x = 4
2 = 2 or x = − 6

2 = −3. It follows that the parabola has its
x-intercepts at x = 2 and x = −3, i.e. at the points (−3, 0) and (2, 0). �
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Quiz #2. Friday, 1 October, 2010. (6 minutes)

1. Solve the equation e2x − 2ex + 1 = 0 for x.

Hint: Solve for ex first . . .

Solution. Recall that e2x = (ex)
2
, so we can rewrite the given equation as (ex)

2−2ex+1 =
0. Following the hint, we solve for ex using the quadratic equation:

ex =
−(−2) ±

�
(−2)2 − 4 · 1 · 1

2 · 1
=

2 ±
√

4 − 4

2
=

2 ± 0

2
= 1

Thus x = ln (ex) = ln(1) = 0. �

Quiz #3. Friday, 8 October, 2010. (10 minutes)

1. Evaluate the limit lim
x→1

x2 + x − 2

x − 1
, if it exists. [5]

Solution. We factor the numerator and simplify:

lim
x→1

x2 + x − 2

x − 1
= lim

x→1

(x − 1)(x + 2)

x − 1
= lim

x→1
(x + 2) = 1 + 2 = 3

In case of problems factoring this by sight, one could always apply the quadratic
formula. The roots of x2 + x − 2 are:

−1 ±
�

12 − 4 · 1 · (−2)

2 · 1
=

−1 ±
√

9

2
=

−1 ± 3

2
= +1 or −2

It follows that x2 + x − 2 = (x − 1) (x − (−2)) = (x − 1)(x + 2). �

Quiz #4. Friday, 15 October, 2010. (10 minutes)

1. Use the limit definition of the derivative to compute f �(2) if f(x) = x2 + 3x + 1. [5]

Solution. Here goes!

f �(2) = lim
h→0

f(2 + h) − f(2)

h

= lim
h→0

�
(2 + h)2 + 3(2 + h) + 1

�
−
�
22 + 3 · 2 + 1

�

h

= lim
h→0

�
4 + 4h + h2 + 6 + 3h + 1

�
− [4 + 6 + 1]

h

= lim
h→0

h2 + 7h

h

= lim
h→0

(h + 7) = 0 + 7 = 7 �

2
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Quiz #5. Friday, 22 October Monday, 1 November, 2010. (10 minutes)

1. Find f �(x) if f(x) = x2+2x
x2+2x+1 . Simplify your answer as much as you reasonably can.

[5]

Solution. The Quotient Rule followed by algebra:

f �(x) =
d
dx

�
x2 + 2x

�
·
�
x2 + 2x + 1

�
−
�
x2 + 2x

�
· d

dx

�
x2 + 2x + 1

�

(x2 + 2x + 1)
2

=
(2x + 2)

�
x2 + 2x + 1

�
−
�
x2 + 2x

�
(2x + 2)

(x2 + 2x + 1)
2

=
2(x + 1)(x + 1)2 −

�
x2 + 2x

�
2(x + 1)

((x + 1)2)
2

=
2(x + 1)3 −

�
x2 + 2x

�
2(x + 1)

(x + 1)4

=
2(x + 1)2 − 2

�
x2 + 2x

�

(x + 1)3

=
2
�
x2 + 2x + 1

�
− 2

�
x2 + 2x

�

(x + 1)3

=
2

(x + 1)3
�

Quiz #6. Friday, 5 November, 2010. (10 minutes)

1. Find
dy

dx
if y =

�
x + arctan(x). [5]

Solution. This is a job for the Chain Rule. Note first that, using the Power Rule,
d
dt

√
t = d

dt t
1/2 = 1

2 t−1/2 = 1
2
√

t
. Letting t = x + arctan(x) and applying the Chain Rule

gives:

dy

dx
=

dy

dt
· dt

dx
=

�
d

dt

√
t

�
· dt

dx
=

1

2
√

t
· dt

dx

=
1

2
�

x + arctan(x)
· d

dx
(x + arctan(x))

=
1

2
�

x + arctan(x)
·
�

dx

dx
+

d

dx
arctan(x)

�

=
1

2
�

x + arctan(x)
·
�

1 +
1

1 + x2

�

There’s not much one can to do to meaningfully simplify this. A little algebra could give

you something like dy
dx = 2+x2

2(1+x2)
√

x+arctan(x)
, but it’s not clear that’s an improvement. �

3

215



Quiz #7. Friday, 12 November, 2010. (10 minutes)

1. Find the maximum and minimum of f(x) =
x

1 + x2
on the interval [−2, 2]. [5]

Solution. We compute f �(x) using the Quotient Rule:

f �(x) =

�
d
dxx
� �

1 + x2
�
− x d

dx

�
1 + x2

�

(1 + x2)
2 =

1
�
1 + x2

�
− x · 2x

(1 + x2)
2 =

1 − x2

(1 + x2)
2

Note that the denominator of f �(x) is never 0 because 1 + x2 ≥ 1 for all x, so f �(x) is

defined for all x in the interval [−2, 2]. f �(x) =
1 − x2

(1 + x2)
2 = 0 exactly when 1− x2 = 0. It

follows that the critical points of f(x) are x = ±1, both of which in the interval [−2, 2].
We compare the values of f(x) at the critical points and the endpoints of the interval:

x f(x) =
x

1 + x2

−2
−2

1 + (−2)2
= −2

5

−1
−1

1 + (−1)2
= −1

2

1
1

1 + 12
=

1

2

2
2

1 + 22
=

2

5

Since −1

2
< −2

5
<

2

5
<

1

2
, it follows that the maximum of f(x) =

x

1 + x2
on the interval

[−2, 2] is f(1) =
1

2
and the minimum is f(−1) = −1

2
. �

Quiz #8. Friday, 26 November, 2010. (10 minutes)

1. Find an antiderivative of f(x) = 4x3 − 3 cos(x) +
1

x
. [5]

Solution. This is mainly an exercise in memorizing basic rules about antiderivatives
and the antiderivatives of standard functions. Using the indefinite integral notation for
antiderivatives we get:

� �
4x3 − 3 cos(x) +

1

x

�
dx = 4

�
x3 dx − 3

�
cos(x) dx +

�
1

x
dx

= 4 · x3+1

3 + 1
− 3 sin(x) + ln(x) + C

= x4 − 3 sin(x) + ln(x) + C

Since we just asked for an antiderivative, any value of C – including 0 – is fine here. �

4
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Quiz #9. Friday, 3 December, 2010. (10 minutes)

1. Compute the definite integral

� 1

0

(2x + 1) dx using the Right-hand Rule. [5]

Hint: You may assume that
n�

k=1

k = 1 + 2 + 3 + · · · + n =
n(n + 1)

2
.

Solution. Recall that the Right-hand Rule formula is:

� b

a

f(x) dx = lim
n→∞

∞�

k=1

b − a

n
f

�
a + k

b − a

n

�

We plug a = 0, b = 1, and f(x) = 2x + 1 into this formula and grind away:

� 1

0

(2x + 1) dx = lim
n→∞

∞�

k=1

1 − 0

n
f

�
0 + k

1 − 0

n

�
= lim

n→∞

∞�

k=1

1

n
f

�
k

n

�

= lim
n→∞

1

n

∞�

k=1

f

�
k

n

�
= lim

n→∞
1

n

∞�

k=1

�
2
k

n
+ 1

�

= lim
n→∞

1

n

�� ∞�

k=1

2k

n

�
+

� ∞�

k=1

1

��

= lim
n→∞

1

n

��
2

n

∞�

k=1

k

�
+

� ∞�

k=1

1

��

= lim
n→∞

1

n

�
2

n
· n(n + 1)

2
+ n

�

= lim
n→∞

1

n
[(n + 1) + n]

= lim
n→∞

1

n
[2n + 1] = lim

n→∞

�
2n

n
+

1

n

�

= lim
n→∞

�
2 +

1

n

�
= 2 + 0 = 2 �

5
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Quiz #10. Friday, 10 December, 2010. (10 minutes)

1. Find the area between the graphs of f(x) = sin(x) and g(x) =
2x

π
for 0 ≤ x ≤ π

2
. [5]

Solution. Note that f(0) = 0 = g(0) and f
�
π
2

�
= g

�
π
2

�
= 1. Between these points

f(x) ≥ g(x) – sketch the graphs to convince yourself, if necessary – so the area between
them is:

� π/2

0

(f(x) − g(x)) dx =

� π/2

0

�
sin(x) − 2x

π

�
dx

=

�
− cos(x) − 2

π
· x2

2

�����
π/2

0

=

�
− cos(π/2) − (π/2)2

π

�
−
�
− cos(0) − 02

π

�

=
�
−0 − π

4

�
− (−1 − 0)

= −π

4
+ 1 = 1 − π

4

Quick sanity check: π < 4, so π
4 < 1, so 1 − π

4 is positive, as an area should be. �

Quiz #11. Friday, 14 January, 2011. (10 minutes)

1. Compute

� π/2

0

cos3(x) dx. [5]

Solution. This can be done pretty quickly using the appropriate reduction formula
or integration by parts, but it’s also easy to do by a combination of the trig identity
cos2(x) = 1 − sin2(x) and substitution:

� π/2

0

cos3(x) dx =

� π/2

0

cos2(x) cos(x) dx

=

� π/2

0

�
1 − sin2(x)

�
cos(x) dx

Substitute u = sin(x), so du = cos(x) dx, and

change the limits:
x 0 π/2
u 0 1

.

=

� 1

0

�
1 − u2

�
du

=

�
u − u3

3

�����
1

0

=

�
1 − 13

3

�
−
�

0 − 03

3

�

=
2

3
− 0 =

2

3
�

6
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Quiz #12. Friday, 21 January, 2011. (10 minutes)

1. Compute

�
tan3(x) sec(x) dx. [5]

Solution. There are other ways to pull this off, but the following use of the identity
tan2(x) = sec2(x) − 1 and substitution is pretty quick:

�
tan3(x) sec(x) dx =

�
tan2(x) tan(x) sec(x) dx

=

� �
sec2(x) − 1

�
sec(x) tan(x) dx

Substitute u = sec(x), so du = sec(x) tan(x) dx.

=

� �
u2 − 1

�
dx

=
1

3
u3 − u + C

=
1

3
sec3(x) − sec(x) + C �

Quiz #13. Friday, 28 January, 2011. (10 minutes)

1. Compute

�
1√

4 + x2
dx. [5]

Solution. We’ll use the trigonometric substitution x = 2 tan(θ), so dx = 2 sec2(θ) dθ,

and also tan(θ) = x
2 and sec(θ) =

�
sec2(θ) =

�
1 + tan2(θ) =

�
1 + x2

4 . (We’ll need these

last when substituting back.)

�
1√

4 + x2
dx =

�
1�

4 + (2 tan(θ))
2

2 sec2(θ) dθ

=

�
2 sec2(θ)�

4 + 4 tan2(θ)
dθ =

�
2 sec2(θ)�

4
�
1 + tan2(θ)

� dθ

=
2√
4

�
sec2(θ)�

1 + tan2(θ)
dθ =

2

2

�
sec2(θ)�
sec2(θ)

dθ

=

�
sec2(θ)

sec(θ)
dθ =

�
sec(θ) dθ

= ln (sec(θ) + tan(θ)) + C

= ln

��
1 +

x2

4
+

x

2

�
+ C �

7
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Quiz #14. Friday, 4 February, 2011. (15 minutes)

1. Compute

�
4x2 + 3x

(x + 2) (x2 + 1)
dx. [5]

Solution. This is a job for partial fractions. Note that the denominator of the integrand,
(x + 2)

�
x2 + 1

�
, come pre-factored into linear factor and irreducible quadratic factors.

(x2 + 1 doesn’t factor any further because it has no roots, since x2 + 1 ≥ 1 > 0 for all x.)
It follows that

4x2 + 3x

(x + 2) (x2 + 1)
=

A

x + 2
+

Bx + C

x2 + 1

for some constants A, B, and C. To determine these constants we put the right-hand side
of the above equation over the common denominator

A

x + 2
+

Bx + C

x2 + 1
=

A
�
x2 + 1

�
+ (Bx + C)(x + 2)

(x + 2) (x2 + 1)

=
Ax2 + A + Bx2 + 2Bx + Cx + 2C

(x + 2) (x2 + 1)

=
(A + B)x2 + (2B + C)x + (A + 2C)

(x + 2) (x2 + 1)
,

and then equate numerators

4x2 + 3x = (A + B)x2 + (2B + C)x + (A + 2C)

to obtain a set of three linear equations in A, B, and C:

A + B = 4
2B + C = 3

A + 2C = 0

These equations can be solved in a variety of ways; we will do so using substitution.
Solving the third equation for A gives A = −2C. Substituting this into the first equation
gives B − 2C = 4; solving this for B now gives B = 4 + 2C. Substituting the last into the
second equation now gives 2(4 + 2C) + C = 3, i.e. 8 + 5C = 3, so 5C = 3 − 8 = −5, so
C = −5/5 = −1. It follows that B = 4+2C = 4+2(−1) = 2 and A = −2C = −2(−1) = 2.

Thus

�
4x2 + 3x

(x + 2) (x2 + 1)
dx =

� �
2

x + 2
+

2x − 1

x2 + 1

�
dx

=

�
2

x + 2
dx +

�
2x − 1

x2 + 1
dx

=

�
2

x + 2
dx +

�
2x

x2 + 1
dx −

�
1

x2 + 1
dx

8

220



We handle the three parts separately. In the first, we use the substitution u = x + 2, so
du = dx. In the second, we use the substitution w = x2 + 1, so dw = 2x dx. In the third,

we recollect that
1

x2 + 1
is the derivative of arctan(x). Now

�
4x2 + 3x

(x + 2) (x2 + 1)
dx =

�
2

x + 2
dx +

�
2x

x2 + 1
dx −

�
1

x2 + 1
dx

= 2

�
1

u
du +

�
1

w
dw + arctan(x)

= 2ln(u) + ln(w) + arctan(x) + C

Since the last integral sign has disappeared, the generic

constant must now show up. Substituting back gives:

= 2ln(x + 2) + ln
�
x2 + 1

�
+ arctan(x) + C

Whew! �

Quiz #15. Friday, 18 February, 2011. (15 minutes)

1. Sketch the surface obtained by revolving the curve y = ln(x), 1 ≤ x ≤ e, about the
y-axis, and find its area. [5]

Hint: You may find it convenient to just use the fact that

�
sec3(θ) dθ =

1

2
tan(θ) sec(θ) +

1

2
ln (tan(θ) + sec(θ)) + C ,

instead of having to work it out from scratch.

Solution. Here’s a sketch of the surface, albeit I cheated a little by starting with a graph
of y = ln(x) drawn by a computer.

-3 -2 -1 0 1 2 3 4 5 6

-2

-1

1

2

3

4

Note that we only want the part that come from revolving the part of y = ln(x) for
1 ≤ x ≤ e.

9
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To find the area of this surface, we use the usual formula for the area of a surface of
revolution obtained by revolving a curve about the y-axis:

� e

1

2πx

�
1 +

�
dy

dx

�2

dx = 2π

� e

1

x

�
1 +

�
d

dx
ln(x)

�2

dx = 2π

� e

1

x

�
1 +

�
1

x

�2

dx

= 2π

� e

1

x

�
1 +

1

x2
dx = 2π

� e

1

�
x2

�
1 +

1

x2

�
dx

= 2π

� e

1

�
x2 + 1 dx

Substitute x = tan(θ), so dx = sec2(θ) dθ,

keep the old limits and substitute back.

= 2π

� x=e

x=1

�
tan2(θ) + 1 sec2(θ) dθ

= 2π

� x=e

x=1

�
sec2(θ) sec2(θ) dθ = 2π

� x=e

x=1

sec3(θ) dθ

Use the hint! Note that sec(θ) =
�

tan2(θ) + 1 =
�

x2 + 1.

= 2π

�
1

2
tan(θ) sec(θ) +

1

2
ln (tan(θ) + sec(θ))

�����
x=e

x=1

= π
�
x
�

x2 + 1 + ln
�
x +

�
x2 + 1

�����
x=e

x=1

= π
�
e
�

e2 + 1 + ln
�
e +

�
e2 + 1

�
−
√

2 − ln
�
1 +

√
2
��

This doesn’t seem to simplify nicely . . . �

Quiz #15. Some time or other, 2011. (15 minutes)

1. Find the area of the surface obtained by revolving the curve y =
√

1 − x2, where
0 ≤ x ≤ 1, about the y-axis. [5]

Solution. In this case

dy

dx
=

d

dx

�
1 − x2 =

1

2
√

1 − x2
· d

dx

�
1 − x2

�
=

1

2
√

1 − x2
· (−2x) =

−x√
1 − x2

.

We plug this into the surface area formula

� b

a

2πx

�
1 +

�
dy

dx

�2

dx, giving:

Area =

� 1

0

2πx

�
1 +

� −x√
1 − x2

�2

dx =

� 1

0

2πx

�
1 +

x2

1 − x2
dx

=

� 1

0

2πx

�
1 − x2

1 − x2
+

x2

1 − x2
dx =

� 1

0

2πx

�
1 − x2 + x2

1 − x2
dx

=

� 1

0

2πx

�
1

1 − x2
dx =

� 1

0

2πx
1√

1 − x2
dx

10
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We will compute the last integral using the substitution u = 1 − x2, so du = −2x dx and

(−1) du = 2x dx, changing the limits as we go along:
x 0 1
u 1 0

. Then:

Area =

� 1

0

2πx
1√

1 − x2
dx =

� 0

1

π
1√
u

(−1) du = π

� 1

0

u1/2 du

= π
u3/2

3/2

����
1

0

= π
2

3
u3/2

����
1

0

= π
2

3
13/2 − π

2

3
03/2 =

2

3
π �

Quiz #16. Some time or other, 2011. (12 minutes)

1. Sketch the region bounded by r = tan(θ), θ = 0, and θ =
π

4
in polar coordinates and

find its area. [5]

Solution. Note that when θ = 0, r = tan(0) = 0, and when θ =
π

4
, r = tan(π/4) =

sin(π/4)

cos(π/4)
=

1/
√

2

1/
√

2
= 1. In between, sin(θ) is increasing and cos(θ) is decreasing as θ is

increasing, so r = tan(θ) =
sin(θ)

cos(θ)
is increasing. The region therefore looks something like

this:

To find its area, we need to plug r = tan(θ) into the polar area formula for 0 ≤ θ ≤ π

4
and integrate away:

Area =

� β

α

1

2
r2 dθ =

� π/4

0

1

2
tan2(θ) dθ =

1

2

� π/4

0

�
sec2(θ) − 1

�
dθ =

1

2
(tan(θ) − θ)

����
π/4

0

=
1

2

�
tan

�π
4

�
− π

4

�
− 1

2
(tan (0) − 0) =

1

2

�
1 − π

4

�
− 1

2
0 =

1

2
− π

8
�

11
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Quiz #17. Friday, 11 March, 2011. (12 minutes)

1. Find the arc-length of the parametric curve x = sec(t), y = ln (sec(t) + tan(t)), where
0 ≤ t ≤ π

4 .

Solution. We’re going to need to know dx
dt and dy

dt , so we’ll compute them first:

dx

dt
=

d

dt
sec(t) = sec(t) tan(t)

dy

dt
=

d

dt
ln (sec(t) + tan(t))

=
1

sec(t) + tan(t)
· d

dt
(sec(t) + tan(t))

=
1

sec(t) + tan(t)
·
�
sec(t) tan(t) + sec2(t)

�

=
1

sec(t) + tan(t)
· sec(t) (tan(t) + sec(t)) = sec(t)

We can now compute the arc-length of the given curve:

arc-length =

�

C

ds =

� π/4

0

��
dx

dt

�2

+

�
dy

dt

�2

dt

=

� π/4

0

�
(sec(t) tan(t))

2
+ (sec(t))

2
dt

=

� π/4

0

�
sec2(t)

�
tan2(t) + 1

�
dt =

� π/4

0

�
sec2(t) sec2(t) dt

=

� π/4

0

�
(sec2(t))

2
dt =

� π/4

0

sec2(t) dt = tan(t)|π/4
0

= tan
�π

4

�
− tan(0) = 1 − 0 = 1 �

12
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Quiz #18. Friday, 18 March, 2011. (10 minutes)

1. Compute lim
n→∞

n2

en
. [5]

Solution. Observe that f(x) =
x2

ex
is defined and differentiable (and hence continuous)

on [0,∞), and such that f(n) =
n2

en
. It follows that:

lim
n→∞

n2

en
= lim

x→∞
x2

ex

Since x2 → ∞ and ex → ∞ as x → ∞,
we apply L’Hôpital’s Rule.

= lim
x→∞

d
dxx2

d
dxex

= lim
x→∞

2x

ex

Since 2x → ∞ and ex → ∞ as x → ∞,
we apply L’Hôpital’s Rule again.

= lim
x→∞

d
dx2x
d
dxex

= lim
x→∞

2

ex

= 0 . . . because 2 is constant and ex → ∞ as x → ∞. �

Quiz #19. Friday, 25 March, 2011. (10 minutes)

1. Determine whether the series
∞�

n=0

1

n2 + 2n
converges or diverges. [5]

Solution. Note that 0 <
1

n2 + 2n
≤ 1

2n
=

�
1

2

�n

for all n ≥ 0, and that the series

∞�

n=0

1

2n
converges, because it is a geometric series with common ratio 1

2 < 1. It follows

that
∞�

n=0

1

n2 + 2n
converges by the Comparison Test. �

Note: One could also compare the given series to the series

∞�

n=0

1

n2
, which converges by

the p-Test.

13
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Quiz #20. Friday, 1 April, 2011. (15 minutes)

1. Determine whether the series
∞�

n=1

(−1)nln(n)

n
converges absolutely, converges condi-

tionally, or diverges.

Solution. This series converges conditionally.
First, we check if the given series converges absolutely. The corresponding series of

positive terms is

∞�

n=1

����
(−1)nln(n)

n

���� =
∞�

n=2

ln(n)

n
. Since f(x) =

ln(x)

x
is defined, continuous,

and positive for x ≥ 2, we can use the Integral Test. Since the improper integral

� ∞

2

ln(x)

x
dx = lim

t→∞

� t

2

ln(x)

x
dx

(Substitute u = ln(x), so du = 1
x dx,

and change limits accordingly.)

= lim
t→∞

� ln(t)

ln(2)

u du = lim
t→∞

u2
��
� ln(t)

ln(2)

= lim
t→∞

�
(ln(t))

2 − (ln(2))
2
�

= ∞ (Since ln(t) → ∞ as t → ∞.)

does not converge, it follows by the Integral Test that neither does
∞�

n=2

ln(n)

n
. (One could

also do this part very quickly by comparison with the series

∞�

n=2

1

n
.) Thus the given series

does not converge absolutely.
Second, to check that the given series converges, we will apply the Alternating Series

Test.

• The series is indeed alternating: once n > 1,
ln(n)

n
is always positive, so the (−1)n

forces successive terms to switch sign.

• limn→∞
��� (−1)nln(n)

n

��� = limn→∞
ln(n)

n = limx→∞
ln(x)

x = limx→∞
1/x
1 = 0, as required.

(Note the use of l’Hôpital’s Rule at the key step.)

• Successive terms decrease in absolute value once n > 1 since the function f(x) = ln(x)
x

is decreasing for x > e because (Quotient Rule!) f �(x) =
1
x x−ln(x)1

x2 = 1−ln(x)
x2 < 0 as

soon as ln(x) > 1.

It follows that
∞�

n=1

(−1)nln(n)

n
converges by the Alternating Series Test. Since it does

converge, but not absolutely, the series converges conditionally. �

14
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1

1. Find
dy

dx
in any three (3) of a-e. [12 = 3 × 4 each]

a. y = xx b. y =
1

1 + x2
c. y = cos

�√
x
�

d. y2 + x = 1 e. y = x2e−x

Solutions. a. y = xx =
�
eln(x)

�x
= exln(x) so, using the Chain and Product Rules:

dy

dx
=

d

dx
xx =

d

dx
exln(x) = exln(x) · d

dx
(xln(x)) = exln(x) ·

��
d

dx
x

�
· ln(x) + x · d

dx
ln(x)

�

= exln(x) ·
�
1 · ln(x) + x · 1

x

�
= xx · (ln(x) + 1)

This can also be done using logarithmic differentiation. �
b. Using the Quotient Rule:

dy

dx
=

d

dx

�
1

1 + x2

�
=

�
d
dx1
�

·
�
1 + x2

�
− 1 · d

dx

�
1 + x2

�

(1 + x2)
2

=
0 ·
�
1 + x2

�
− 1 · (2x)

(1 + x2)
2 =

−2x

(1 + x2)
2 �

c. Using the Chain Rule:

dy

dx
=

d

dx
cos
�√

x
�

= − sin
�√

x
�

· d

dx

√
x = − sin

�√
x
�

· 1

2
√

x
=

− sin (
√

x)

2
√

x

Recall that
√

x = x1/2, so, using the Power Rule,
d

dx

√
x =

d

dx
x1/2 =

1

2
x−1/2 − 1

2
√

x
. �

d. Using implicit differentiation and the Chain Rule:

y2 + x = 1 ⇒ d

dx

�
y2 + x

�
=

d

dx
1 ⇒ 2y

dy

dx
+ 1 = 0 ⇒ dy

dx
= − 1

2y

One could also solve for y in terms of x in the original equation and then differentiate. �
e. Using the Product and Chain Rules:

dy

dx
=

d

dx

�
x2e−x

�
=

�
d

dx
x2

�
· e−x + x2 ·

�
d

dx
e−x

�
= 2xe−x + x2e−x ·

�
d

dx
(−x)

�

= 2xe−x + x2e−x · (−1) =
�
2x − x2

�
e−x = x (2 − x) e−x �
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2

2. Do any two (2) of a-d. [10 = 2 × 5 each]

a. Use the limit definition of the derivative to compute f �(0) for f(x) = x2−3x+π.

b. Suppose f(x) =
x

sin(x)
for x �= 0. What would f(0) have to be to make f(x)

continuous at a = 0?

c. Find the equation of the tangent line to y = x2 at the point (2, 4).

d. Use the ε− δ definition of limits to verify that lim
x→1

(2x + 3) = 5.

Solutions. a. Plug into the definition and chug away:

f �(0) = lim
h→0

f(0 + h) − f(0)

h
= lim

h→0

f(h) − f(0)

h
= lim

h→0

�
h2 − 3h + π

�
−
�
02 − 3 · 0 + π

�

h

= lim
h→0

h2 − 3h + π − π

h
= lim

h→0

h2 − 3h + 0

h
= lim

h→0
(h − 3) = 0 − 3 = −3 �

b. To make f(x) continuous at a = 0, we need to make f(0) = lim
x→0

f(x), so we have to

compute the limit:

lim
x→0

f(x) = lim
x→0

x

sin(x)

This we compute using l’Hôpital’s Rule, since
both x → 0 and sin(x) → 0 as x → 0.

= lim
x→0

d
dxx

d
dx sin(x)

= lim
x→0

1

cos(x)
=

1

1
= 1 Since cos(x) → 1 as x → 0.

Thus we need to make f(0) = 1 to have f(x) be continuous at a = 1. �

c. The slope of the tangent line to y = x2 at (2, 4) is given by
dy

dx
=

d

dx
x2 = 2x evaluated

at x = 2: m =
dy

dx

����
x=2

= 2x|x=2 = 2 · 2 = 4. The equation of the line is therefore

y = 4x + b for some b. To find b, plug the coordinates of the point (2, 4) in for x and y in
the equation of the line and solve for b: 4 = 4 · 2 + b, so b = 4 − 8 = −4.

Thus the equation of the tangent line to y = x2 at (2, 4) is y = 4x − 4. �
d. To verify that lim

x→1
(2x + 3) = 5, we need to show that for any ε > 0 there is a δ > 0

such that if 0 < |x − 1| < δ, then |(2x + 3) − 5| < ε. As usual, we reverse-engineer the
required δ from what we need to achieve:

|(2x + 3) − 5| < ε ⇔ |2x − 2| < ε ⇔ 2|x − 1| < ε ⇔ |x − 1| <
ε

2

It follows that δ =
ε

2
does the job: if |x − 1| < δ = ε

2 , we can traverse the chain of

equivalences above backwards to obtain |(2x + 3) − 5| < ε, as required.
Thus lim

x→1
(2x + 3) = 5. �
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3

3. Birds Alpha and Beta leave their nest at the same time, with Alpha flying due north
at 5 km/h and Beta flying due east at 10 km/h. How is the area of the triangle formed
by their respective positions and the nest changing 1 h after their departure? [8]

Solution. Note that after 1 h, Alpha and Beta will have flown 5 km and 10 km, respec-
tively.

Let a(t) and b(t) be the distances that birds Alpha and Beta, respectively, are from
the nest at time t. Then most of the given information can be summarized as follows:
a(0) = b(0) = 0, a(1) = 5, b(1) = 10, a�(t) = 5, and b�(t) = 10. Since the birds fly
north and east, respectively, their positions and the position of the nest form a right
triangle with base b(t) and height a(t) at each instant; the area of this triangle is therefore

A(t) =
1

2
a(t)b(t). We want to know what A�(t) is at t = 1.

Using the Product Rule:

A�(t) =
d

dt

�
1

2
a(t)b(t)

�
=

1

2
[a�(t)b(t) + a(t)b�(t)]

Hence

A�(1) =
1

2
[a�(1)b(1) + a(1)b�(1)]

=
1

2
[5 km/h · 10 km + 5 km · 10 km/h]

=
1

2
100 km2/h = 50 km2/h ,

i.e. the area of the triangle formed by the birds’ respective positions and the nest is
increasing at a rate of 50 km2/h one hour after their departure from the nest. �
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4

4. Find the domain and all intercepts, maxima and minima, and vertical and horizontal

asymptotes of f(x) =
x2 + 2

x2 + 1
and sketch its graph based on this information. [10]

Solution. We run through the checklist:

Domain. f(x) = x2+2
x2+1 makes sense for all possible x – note that since x2 ≥ 0, the

denominator is always ≥ 1 > 0 – so the domain of f(x) is (−∞,∞).

Intercepts. f(0) = 02+2
02+1 = 2

1 = 2, so the y-intercept is (0, 2). Since x2 + 2 ≥ 2 for all x –

since, again, x2 ≥ 0 – f(x) is never 0, so f(x) has no x-intercepts.

Maxima and minima. There are no endpoints to worry about, so all we need to do is check
what happens around critical points. Using the Quotient Rule,

f �(x) =
d
dx

�
x2 + 2

�
·
�
x2 + 1

�
−
�
x2 + 2

�
· d

dx

�
x2 + 1

�

(x2 + 1)
2

=
2x ·

�
x2 + 1

�
−
�
x2 + 2

�
· 2x

(x2 + 1)
2 =

−2x

(x2 + 1)
2 ,

which = 0 when x = 0, > 0 when x < 0, and < 0 when x > 0. Note that there are no

points where f �(x) is undefined, since
�
x2 + 1

�2 ≥ 1 > 0 for all x. We build the usual
table:

x (−∞, 0) 0 (0,∞)
f �(x) + 0 −
f(x) ↑ max ↓

Since f(x) is increasing to the left of 0 and decreasing to the right of 0, the critical point
0 (also the y-intercept!) is a maximum. Note that there are no minimum points.

Vertical asymptotes. Since f(x) is defined for all x and continuous (being a rational
function) wherever it is defined, f(x) has no vertical asymptotes.

Horizontal asymptotes. We need to check what f(x) does as x → ±∞:

lim
x→+∞

f(x) = lim
x→+∞

x2 + 2

x2 + 1
= lim

x→+∞
x2 + 2

x2 + 1
· 1/x2

1/x2
= lim

x→+∞
1 + 2/x2

1 + 1/x2
=

1 + 0

1 + 0
= 1

lim
x→−∞

f(x) = lim
x→−∞

x2 + 2

x2 + 1
= lim

x→−∞
x2 + 2

x2 + 1
· 1/x2

1/x2
= lim

x→−∞
1 + 2/x2

1 + 1/x2
=

1 + 0

1 + 0
= 1

It follows that f(x) has y = 1 as its horizontal asymptote in both directions.

The graph. plot((x^2+2)/(x^2+1),x=-5..5,y=0..2.5); in Maple gives:

That’s that! �
[Total = 40]
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1

1. Compute any four (4) of the integrals in parts a-f. [16 = 4 × 4 each]

a.

�
1√

x2 + 1
dx b.

� π/4

0

sec(x) tan(x) dx c.

� ∞

0

e−x dx

d.

�
1

x2 + 3x + 2
dx e.

�
cos(x)

sin(x)
dx f.

� e

1

ln(x) dx

Solutions. a. We’ll use the trig substitution x = tan(θ), so dx = sec2(θ) dθ and√
x2 + 1 =

�
tan2(θ) + 1 =

�
sec2(θ) = sec(θ).

�
1√

x2 + 1
dx =

�
1

sec(θ)
sec2(θ) dθ =

�
sec(θ) dθ = ln (tan(θ) + sec(θ)) + C

= ln
�
x +

�
x2 + 1

�
+ C �

b. We’ll use the substitution u = sec(x), so du = sec(x) tan(x) dx and
x 0 π/4
u 1

√
2

. (Note

that sec(π/4) = 1/ cos(π/4) = 1/
�
1/

√
2
�

=
√

2.)

� π/4

0

sec(x) tan(x) dx =

� √
2

1

1 du = u|
√

2
1 =

√
2 − 1 �

c. We’ll use the substitution w = −x, so dw = (−1)dx and dx = (−1)dw, and
x 0 t
w 0 −t

.

Note that this is an improper integral, so we’ll have to take a limit first.

� ∞

0

e−x dx = lim
t→∞

� t

0

e−x dx = lim
t→∞

� −t

0

ew (−1)dw = lim
t→∞

(−1)ew|−t
0

= lim
t→∞

�
(−1)e−t − (−1)e0

�
= lim

t→∞

�
−e−t + 1

�
= lim

t→∞

�
1 − 1

et

�
= 1 − 0 = 1

Note that
1

et
→ 0 as t → ∞ since et → ∞ as t → ∞. �

d. This is a job for partial fractions. Note first that x2 + 3x + 2 = (x + 1)(x + 2). (This
can be done by eyeballing, experimenting a bit, or using the quadratic formula to find the
roots of x2 + 3x + 2. Calculators that can do some symbolic computation should be able
to factor the quadratic too.) We must therefore have a partial fraction decomposition of
the form

1

x2 + 3x + 2
=

1

(x + 1)(x + 2)
=

A

x + 1
+

B

x + 2

for some constants A and B. It follows that

1

(x + 1)(x + 2)
=

A

x + 1
+

B

x + 2
=

A(x + 2) + B(x + 1)

(x + 1)(x + 2)
=

(A + B)x + (2A + B)

(x + 1)(x + 2)
,

2
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so A + B = 0 and 2A + B = 1. Then A = (2A + B) − (A + B) = 1 − 0 = 1 and
B = 0 − A = −1.

We can now integrate at last; we’ll use the substitutions u = x + 1 and w = x + 2, so
du = dx and dw = dx.

�
1

x2 + 3x + 2
dx =

� �
1

x + 1
+

−1

x + 2

�
dx =

�
1

x + 1
dx −

�
1

x + 2
dx

=

�
1

u
du −

�
1

w
dw = ln(u) − ln(w) + C

= ln(x + 1) − ln(x + 2) + C �

e. We’ll use the substitution u = sin(x), so du = cos(x) dx.

�
cos(x)

sin(x)
dx =

�
1

u
du = ln(u) + C = ln (sin(x)) + C �

f. We’ll use integration by parts, with u = ln(x) and v� = 1, so u� =
1

x
and v = x.

� e

1

ln(x) dx =

� e

1

uv� dx = uv|e1 −
� e

1

u�v dx = xln(x)|e1 −
� e

1

1

x
x dx

= (eln(e) − 1ln(1)) −
� e

1

1 dx = (e · 1 − 1 · 0) − x|e1 = e − (e − 1) = 1 �

2

2. Do any two (2) of parts a-e. [12 = 2 × 6 each]

a. Compute

� 2

1

x3 − x2 − x + 1

x + 1
dx

b. Find the area between y = cos(x) and y = sin(x) for 0 ≤ x ≤ π

2
.

c. Which of

� 41

π

arctan
�√

x
�

dx and

� 41

π

arctan
�
x2
�

dx is larger? Explain why.

d. Use the Right-hand Rule to compute

� 2

1

x dx.

e. Find the area of the region bounded by y = 0 and y = ln(x) for 0 < x ≤ 1.

Solutions. a. This is a rational function whose numerator has degree greater than its
denominator. Observe that

x3 − x2 − x + 1

x + 1
=

�
x3 − x

�
+
�
−x2 + 1

�

x + 1
=

x
�
x2 − 1

�
− 1

�
x2 − 1

�

x + 1

=
(x − 1)

�
x2 − 1

�

x + 1
=

(x − 1)(x − 1)(x + 1)

x + 1
= (x − 1)2 ,

3
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which we could also get by dividing x + 1 into x3 − x2 − x + 1 if we didn’t spot the cheap
bit of algebra above.

We can now integrate; we’ll use the substitution w = x − 1, so dw = dx, and we’ll

change limits accordingly:
x 1 2
w 0 1

. Thus:

� 2

1

x3 − x2 − x + 1

x + 1
dx =

� 2

1

(x − 1)2 dx =

� 1

0

w2 dw =
w3

3

����
1

0

=
1

3
− 0

3
=

1

3
�

b. Recall what the graphs of cos(x) and sin(x) look like:

plot( [cos(x), sin(x)], x=0..(1/2)*Pi );

cos(0) = 1 and sin(0) = 0, but cos
�
π
2

�
= 0 and sin

�
π
2

�
= 1; the graphs of the two functions

cross each other at x = π
4 , where both are equal to 1/

√
2. The area between the curves is

therefore:

Area =

� π/4

0

(cos(x) − sin(x)) dx +

� π/2

π/4

(sin(x) − cos(x)) dx

= (sin(x) − (− cos(x)))|π/4
0 + (− cos(x) − sin(x))|π/2

π/4

=
�
sin
�π

4

�
+ cos

�π
4

��
− (sin (0) + cos (0))

+
�
− cos

�π
2

�
− sin

�π
2

��
−
�
− cos

�π
4

�
− sin

�π
4

��

=

�
1√
2

+
1√
2

�
− (0 + 1) + (−0 − 1) −

�
− 1√

2
− 1√

2

�

=
4√
2
− 2 = 2

√
2 − 2 = 2

�√
2 − 1

�
�

c. Note that the two definite integrals are the same except for the function of x being

composed with arctan. As arctan(t) is an increasing function – its derivative,
1

1 + t2
, is

positive for all t – and
√

x < x2 for all x > 1, we must have arctan (
√

x) < arctan
�
x2
�

for

all x in [π, 41]. It follows that

� 41

π

arctan
�√

x
�

dx <

� 41

π

arctan
�
x2
�

dx. �

4
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d. We throw the Right-hand Rule formula,

� b

a

f(x) dx = lim
n→∞

n�

i=1

b − a

n
· f
�

a + i
b − a

n

�
,

at the given definite integral and compute away. Note that f(x) = x in this case.

� 2

1

x dx = lim
n→∞

n�

i=1

2 − 1

n
·
�

1 + i
2 − 1

n

�
= lim

n→∞

n�

i=1

1

n
·
�

1 +
i

n

�
= lim

n→∞
1

n

n�

i=1

�
1 +

i

n

�

= lim
n→∞

1

n

��
n�

i=1

1

�
+

�
n�

i=1

i

n

��
= lim

n→∞
1

n

�
n +

�
1

n

n�

i=1

i

��

= lim
n→∞

1

n

�
n +

1

n
· n(n + 1)

2

�
= lim

n→∞
1

n

�
n +

n + 1

2

�
= lim

n→∞
1

n

�
3

2
n +

1

2

�

= lim
n→∞

�
3

2
+

1

2n

�
=

3

2
+ 0 since

1

2n
→ 0 as n → ∞. �

e. Since ln(x) < 0 for 0 < x < 1, the area of the given region is just
� 1

0
(0 − ln(x)) dx =

−
� 1

0
ln(x) dx. However, since ln(x) has an asymptote at x = 0, this is an improper integral,

forcing us to do some additional work. To find the antiderivative of ln(x) itself, we will
use integration by parts, with u = ln(x) and v� = 1, so u� = 1

x and v = x.

Area = −
� 1

0

ln(x) dx = lim
t→0+

�
−
� 1

t

ln(x) dx

�
= − lim

t→0+

� 1

t

ln(x) dx

= − lim
t→0+

�
xln(x)|1t −

� 1

t

1

x
x dx

�
= − lim

t→0+

�
1ln(1) − tln(t) −

� 1

t

1 dx

�

= − lim
t→0+

�
1 · 0 − tln(t) − x|1t

�
= − lim

t→0+
[−tln(t) − (1 − t)]

= lim
t→0+

[tln(t) + (1 − t)] = lim
t→0+

ln(t)

1/t
+ lim

t→0+
(1 − t)

Use l’Hôpital’s Rule since ln(t) → −∞ and
1

t
→ ∞ as t → 0+:

=

�
lim

t→0+

1/t

−1/t2

�
+ (1 − 0) =

�
lim

t→0+
−t

�
+ 1 = −0 + 1 = 1 �
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3

3. Do one (1) of parts a or b. [12]

a. Sketch the solid obtained by rotating the region bounded above by y = x2 and
below by y = 0, where 0 ≤ x ≤ 2, about the y-axis, and find its volume.

b. Sketch the solid obtained by rotating the region bounded above by y = x2 and
below by y = 0, where 0 ≤ x ≤ 2, about the x-axis, and find its volume.

Solutions. Note that the region being rotated is the same in both a and b; they differ
in the axis about which the region is rotated.

plot(x^2,x=0..1,color="Red",filled=[color="Red",transparency=.5])

Solution to a. Here is a crude sketch of the solid with a generic cylindrical shell.

The solid with a cylindrical shell.

We will find the volume of the solid using cylindrical shells. Note that since we
rotated the region about the y-axis, we will have to integrate with respect to x if we’re
using shells. Looking at the diagram, it is easy to see that the radius of the cylindrical
shell that comes from rotating the vertical cross-section at x of the original region is just
going to be r = x − 0 = x. It is also easy to see that its height, which is the length of the
vertical cross-section at x of the original region, is going to be h = x2 − 0 = x2. The limits
of integration will come from the possible x values in the original region, i.e. 0 ≤ x ≤ 2.

6
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Thus the volume of the solid is:

Volume =

� 2

0

2πrh dx =

� 2

0

2πxx2 dx = 2π

� 2

0

x3 dx

= 2π
x4

4

����
2

0

= 2π

�
24

4
− 04

4

�
= 2π

�
16

4
− 0

�
= 8π �

Solution to b. Here is a crude sketch of the solid with a generic disk.

The solid with a disk.
Rotate picture 90◦ clockwise!

We will find the volume of the solid using disks. Note that since we rotated the region
about the x-axis, we will have to integrate with respect to x if we’re using disks. Looking
at the diagram, it is easy to see that the radius of the disk that comes from rotating the
vertical cross-section at x of the original region is just going to be the length of that vertical
cross-section, namely r = x2 − 0 = x2. Note that the disk has no hole because the x-axis
forms part of the boundary of the give region, so we needn’t worry about the inner radius:
it is always 0. The limits of integration will come from the possible x values in the original
region, i.e. 0 ≤ x ≤ 2.

Thus the volume of the solid is:

Volume =

� 2

0

πr2 dx = π

� 2

0

�
x2
�2

dx = π

� 2

0

x4 dx

= π
x5

5

����
2

0

= π

�
25

5
− 05

5

�
=

32

5
π �

[Total = 40]
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Mathematics 1101Y – Calculus I: functions and calculus of one variable
Trent University, 2010–2011

Solutions to the Final Examination

Part X. Do all three (3) of 1–3.

1. Compute
dy

dx
as best you can in any three (3) of a–f. [15 = 3 × 5 each]

a. y = cos (ex) b. y =

� x

1

etln(t) dt c. y = xln(x)

d. y =
ln(x)

x
e. arctan(x + y) = 0 f.

x = et

y = e2t

Solutions to 1.

a. Using the Chain Rule:
dy

dx
= − sin (ex) · d

dx
ex = −ex sin (ex) �

b. Using the Fundamental Theorem of Calculus:
dy

dx
= exln(x) �

c. Using the Product Rule:
dy

dx
=

dx

dx
· ln(x)+x · d

dx
ln(x) = ln(x)+x · 1

x
= ln(x)+ 1 �

d. Using the Quotient Rule:

dy

dx
=

�
d
dx ln(x)

�
· x − ln(x) · dx

dx

x2
=

1
x · x − ln(x) · 1

x2
=

1 − ln(x)

x2
�

e. arctan(x + y) = 0 ⇔ x + y = 0 ⇔ y = −x ⇒ dy

dx
= −1 �

Note: This can also be done using implicit differentiation.

f.
dy

dx
=

dy
dt
dx
dt

=
d
dte

2t

d
dte

t
=

e2t · d
dt (2t)

et
=

2e2t

et
=

2 (et)
2

et
= 2et = 2x �

Note: This can also be done by observing that y = e2t = (et)
2

= x2 to begin with.

2. Evaluate any three (3) of the integrals a–f. [15 = 3 × 5 each]

a.

�
ln(x)

x
dx b.

�
1√

z2 − 1
dz c.

� 4

1

√
x dx

d.

� 1

0

x2 + 2

x2 + 1
dx e.

�
tan2(w) dw f.

� ln(2)

0

e2t dt

Solutions to 2.

a. Use the substitution u = ln(x), so du = 1
x dx:

�
ln(x)

x
dx =

�
u du = u2 + C = (ln(x))

2
+ C �

1
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b. Use the trigonometric substition z = sec(θ), so dz = sec(θ) tan(θ) dθ:

�
1√

z2 − 1
dz =

�
1�

sec2(θ) − 1
sec(θ) tan(θ) dθ =

�
1�

tan2(θ)
sec(θ) tan(θ) dθ

=

�
1

tan(θ)
sec(θ) tan(θ) dθ =

�
sec(θ) dθ

= ln (sec(θ) + tan(θ)) + C = ln
�
z +

�
z2 − 1

�
+ C �

c. Use the Power Rule for integration:

� 4

1

√
x dx =

� 4

1

x1/2 dx =
x3/2

3/2

����
4

1

=
2

3

�√
x
�3
����
4

1

=
2

3

�√
4
�3

− 2

3

�√
1
�3

=
2

3
23 − 2

3
=

14

3
�

d. Observe that the integrand is a rational function in which the degree of the numerator
is not less than the degree of the denominator. This means that we need to divide the
denominator into the numerator first, which is very easy in this case:

x2 + 2

x2 + 1
=

�
x2 + 1

�
+ 1

x2 + 1
=

x2 + 1

x2 + 1
+

1

x2 + 1
= 1 +

1

x2 + 1

Hence

� 1

0

x2 + 2

x2 + 1
dx =

� 1

0

�
1 +

1

x2 + 1

�
=

� 1

0

1 dx +

� 1

0

1

x2 + 1
dx

= x|10 + arctan(x)|10 = [1 − 0] + [arctan(1) − arctan(0)]

= 1 +
�π
4
− 0
�

= 1 +
π

4
. �

e. Use the trigonometric identity tan2(w) = sec2(w) − 1:

�
tan2(w) dw =

� �
sec2(w) − 1

�
dw =

�
sec2(w) dw−

�
1 dw = tan(w)−w +C �

f. Use the substitution u = 2t, so du = 2 dt and
1

2
du = dt. Note that

x 0 ln(2)
u 0 2ln(2)

.

� ln(2)

0

e2t dt =

� 2ln(2)

0

eu 1

2
du =

1

2
eu|2ln(2)

0 =
1

2

�
e2ln(2) − e0

�

=

�
eln(2)

�2 − 1

2
=

22 − 1

2
=

4 − 1

2
=

3

2
�

2
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3. Do any five (5) of a–i. [25 = 5 × 5 each]

a. Use the limit definition of the derivative to compute g�(0) for g(x) = 2x + 1.

b. Determine whether the series
∞�

n=2

1

nln(n)
converges or diverges.

c. Find the Taylor series of f(x) = ex+1 at a = 0.

d. Sketch the polar curve r = 1, where 0 ≤ θ ≤ 2π, and find the area of the region
it encloses.

e. Sketch the surface obtained by rotating y =
x2

2
, 0 ≤ x ≤ 2, about the y-axis, and

find its area.

f. Use the Right-hand Rule to compute the definite integral

� 1

0

4x dx.

g. Use the ε− δ definition of limits to verify that lim
x→0

(2x − 1) = −1.

h. Find the interval of convergence of the power series

∞�

n=0

x2n

n!
.

i. Sketch the solid obtained by rotating the region bounded by y = x, y = 0, and
x = 2, about the x-axis, and find its volume.

Solutions to 3.

a. g�(0) = lim
h→0

g(0 + h) − g(0)

h
= lim

h→0

g(h) − g(0)

h
= lim

h→0

(2h − 1) − (2 · 0 − 1)

h

= lim
h→0

2h − 1 − (−1)

h
= lim

h→0

2h

h
= lim

h→0
2 = 2 �

b. Note that f(x) =
1

xln(x)
is positive and continuous for x ≥ 2, and also decreasing,

because xln(x) is clearly increasing to ∞ as x → ∞. Since an = f(n), it follows from
the Integral Test that the given series will converge or diverge depending on whether

the improper integral

� ∞

2

1

xln(x)
dx converges or diverges. Since the improper integral

actually diverges,

� ∞

2

1

xln(x)
dx = lim

t→∞

� t

2

1

xln(x)
dx = lim

t→∞

� ln(t)

ln(2)

1

u
du = lim

t→∞
ln(u)|ln(t)

ln(2)

(Using the substitution u = ln(x), so du =
1

x
dx.)

= lim
t→∞

[ln (ln(t)) − ln (ln(2))] = ∞ (As ln(z) → ∞ when z → ∞.)

the series
∞�

n=2

1

nln(n)
diverges as well. �
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c. (Direct.) Note that f(x) = ex+1 = e · ex, so f �(x) = e · d
dxex = e · ex = f(x). It follows

that f (n)(x) = f(x) = e · ex for every n ≥ 0, and so f (n)(0) = f(0) = e · e0 = e · 1 = e
for every n ≥ 0. Plugging this into Taylor’s Formula gives us

∞�

n=0

f (n)(0)

n!
xn =

∞�

n=0

e

n!
xn �

c. (Indirect.) We know that the Taylor series of ex at 0 is
∞�

n=0

xn

n!
. Thus

f(x) = ex+1 = e · ex = e
∞�

n=0

xn

n!
=

∞�

n=0

e

n!
xn ,

and this last must be the Taylor series for f(x) = ex+1 at 0, because only one power
series can fill this role. �

d. Since 0 ≤ θ ≤ 2π, the curve goes all the way around the origin, and since r = 1
it follows that the curve consists of all the points which are a distance of 1 from the
origin. This means that the curve is the circle of radius 1 centred at the origin – here’s
a sketch:

– and so has area π12 = π. �

e. Here’s a sketch of the surface:

To find its area, we will use the formula for the area of a surface of revolution. Since

4
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y =
x2

2
,

dy

dx
=

1

2
2x = x. Hence

Area =

� 2

0

2πx

�
1 +

�
dy

dx

�2

dx = π

� 2

0

2x
�

1 + x2 dx = π

� 5

1

√
u du

We substituted u = 1 + x2, so du = 2x dx and
x 0 2
u 1 5

.

= π

� 5

1

u1/2 du =
2

3
πu3/2

����
5

1

=
2

3
π5

√
5 − 2

3
π1

√
1 =

2

3
π
�
5
√

5 − 1
�

. �

f. Plug and chug! Recall that the Right-hand Rule formula is

� b

a

f(x) dx = lim
n→∞

n�

i=1

b − a

n
· f

�
a + i

b − a

n

�
,

so

� 1

0

4x dx = lim
n→∞

n�

i=1

1 − 0

n
· 4

�
0 + i

1 − 0

n

�
= lim

n→∞

n�

i=1

1

n
· 4

i

n

= lim
n→∞

4

n2

n�

i=1

i = lim
n→∞

4

n2
· n(n + 1)

2
= lim

n→∞
2(n + 1)

n

= lim
n→∞

�
2n

n
+

2

n

�
= lim

n→∞

�
2 +

2

n

�
= 2 + 0 = 2 . �

g. We need to verify that for every ε > 0, there is some δ > 0, such that if |x − 0| < δ,
then |(2x − 1) − (−1)| < ε. As usual, we will try to reverse-engineer the necessary δ
from ε. Suppose an ε > 0 is given. Then

|(2x − 1) − (−1)| < ε ⇔ |2x − 1 + 1| < ε ⇔ |2x| < ε ⇔ |x| <
ε

2
⇔ |x − 0| <

ε

2
,

so δ =
ε

2
will do the job. Note that every step of our reverse-engineering process above

is reversible, so if |x − 0| < δ =
ε

2
, then |(2x − 1) − (−1)| < ε. �

h. We will use the Ratio Test to find the radius of convergence.

lim
n→∞

����
an+1

an

���� = lim
n→∞

������

x2(n+1)

(n+1)!

x2n

n!

������
= lim

n→∞

����
x2n+2

x2n
· n!

(n + 1)!

���� = lim
n→∞

����
x2

n + 1

���� = 0 ,

since x2 → x2 and n+1 → ∞ as n → ∞. It follows that

∞�

n=0

x2n

n!
converges (absolutely)

for all x, i.e. the radius of convergence is R = ∞ and the interval of convergence is
(−∞,∞). �
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i. Here’s a sketch of the solid:

We will use the disk/washer method to find its volume. Note that the cross-section
of the solid for a fixed value of x is a washer outer radius R = y − 0 = y = x and inner
radius r = 0 (so it’s really a disk). Thus

Volume =

� 2

0

π
�
R2 − r2

�
dx =

� 2

0

π
�
x2 − 02

�
dx

=

� 2

0

πx2 dx = π
x3

3

����
2

0

= π
23

3
− π

03

3
=

8

3
π . �

Part Y. Do any three (3) of 4–7. [45 = 3 × 15 each]

4. A zombie is dropped into a still pool, creating a circular ripple that moves outward
from the point of impact at a constant speed. After 2 s the length of the ripple is
increasing at a rate of 2π m/s . How is the area enclosed by the ripple changing at
this instant?

Hint: You have (just!) enough information to work out how the radius of the ripple
changes with time.

Solution. Recall that the length, i.e. circumference, of a circle of radius r is C = 2πr,
while the area it encloses is A = πr2. In this case r = r(t) changes with time: what we are

given amounts to (1)
dr

dt
is constant and (2)

dC

dt

����
t=2

= 2π, and what we are being asked

to compute is
dA

dt

����
t=2

.

6
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Ignoring the hint for the moment, observe that
dC

dt
=

d

dt
2πr = 2π

dr

dt
. Then

dA

dt
=

d

dt
πr2 = π

dr2

dr
· dr

dt
= π2r

dr

dt
= r

�
2π

dr

dt

�
= r

dC

dt
,

so
dA

dt

����
t=2

= r(2)
dC

dt

����
t=2

= 2πr(2). The problem is that we do not know what r(2) is.

Following the hint, we will try to figure out the radius of the ripple, r(t), as a function
of time, and then compute r(2). There is one more piece of information in the set-up that
we have not made explicit yet: (0) r(0) = 0, since the ripple was only created at the instant
that the zombie fell into the pool.

Now, since
dr

dt
is constant, r(t) = mt + b for some constants m and b. (Obviously,

m = dr
dt .) Note that b = m0 + b = r(0) = 0, using the observation above, so r(t) = mt.

Since

2π =
dC

dt

����
t=2

= 2π
dr

dt

����
t=2

= 2πm ,

we have that m =
dr

dt
= 1, so r(t) = t. It follows that r(2) = 2, and thus

dA

dt

����
t=2

=

r(2)
dC

dt

����
t=2

= 2πr(2) = 2π · 2 = 4π. �

5. Find all the intercepts, maximum, minimum, and inflection points, and all the vertical

and horizontal asymptotes of h(x) =
x

1 − x2
, and sketch its graph.

Solution. i. (y-intercept) Plug in x = 0: h(0) =
0

1 − 02
=

0

1
= 0.

ii. (x-intercept) y = h(x) =
x

1 − x2
= 0 if and only if x = 0.

Note: Thus the sole x- and y-intercept is the point (0, 0).

iii. (Vertical asymptotes) h(x) =
x

1 − x2
is a rational function and hence defined and

continuous whenever the denominator 1 − x2 �= 0, so any vertical asymptotes could occur
only when 1− x2 = 0, i.e. when x = ±1. We’ll take limits from both directions at x = ±1
and see what happens. Note that 1 − x2 → 0 as |x| → 1, so each of these limits must
approach some infinity.

lim
x→−1−

x

1 − x2
= +∞ since 1 − x2 < 0 when x < −1;

lim
x→−1+

x

1 − x2
= −∞ since 1 − x2 > 0 when −1 < x < 0;

lim
x→1−

x

1 − x2
= +∞ since 1 − x2 > 0 when 0 < x < 1;

lim
x→1+

x

1 − x2
= −∞ since 1 − x2 < 0 when x > 1;

7
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Thus h(x) has vertical asymptotes at both x = −1 and x = +1, heading up to +∞ from
the left and down to −∞ from the right of each point.

iv. (Horizontal asymptotes) One could compute the necessary limits with the help of
l’Hôpital’s Rule, but it’s pretty easy to do with a little algebra too:

lim
x→−∞

x

1 − x2
= lim

x→−∞
x

1 − x2
·

1
x2

1
x2

= lim
x→−∞

x
x2

1
x2 − x2

x2

= lim
x→−∞

1
x

1
x2 − 1

=
0

0 − 1
= 0

lim
x→+∞

x

1 − x2
= lim

x→+∞
x

1 − x2
·

1
x2

1
x2

= lim
x→+∞

x
x2

1
x2 − x2

x2

= lim
x→+∞

1
x

1
x2 − 1

=
0

0 − 1
= 0

Thus h(x) has the horizontal asymptote y = 0 in both directions.

v. (Maxima and minima) Note that h(x) is defined and differentiable wherever it is defined
because it is a rational function. First, we compute h�(x) using the Quotient Rule:

h�(x) =
d

dx

�
x

1 − x2

�
=

dx
dx ·

�
1 − x2

�
− x · d

dx

�
1 − x2

�

(1 − x2)
2

=
1 ·
�
1 − x2

�
− x · (0 − 2x)

(1 − x2)
2 =

1 − x2 + 2x2

(1 − x2)
2 =

1 + x2

(1 − x2)
2

Second, we find all the critical points, i.e. the points where h�(x) is 0 or undefined.

h�(x) =
1 + x2

(1 − x2)
2 = 0 exactly when 1+x2 = 0, which is to say never, since 1+x2 ≥ 1 > 0

for all x. h�(x) =
1 + x2

(1 − x2)
2 is defined and continuous unless 1−x2 = 0, i.e. when x = ±1.

Since h(x) has no critical points except where it has vertical asymptotes, h(x) has no local
maxima or minima.

Just for fun, here is the usual table for intervals of increase and decrease:

x < −1 ∈ (−1, 1) > 1
h�(x) − + −
h(x) ↓ ↑ ↓

vi. (Inflection points) First, we compute h��(x) using the Quotient Rule:

h��(x) =
d

dx

�
1 + x2

(1 − x2)
2

�
=

d
dx

�
1 + x2

�
·
�
1 − x2

�2 −
�
1 + x2

�
· d

dx

�
1 − x2

�2

(1 − x2)
4

=
2x ·

�
1 − x2

�2 −
�
1 + x2

�
· 2
�
1 − x2

�
(0 − 2x)

(1 − x2)
4

=
2x ·

�
1 − x2

�
−
�
1 + x2

�
· 2(−2x)

(1 − x2)
3 =

2x − 2x3 + 4x + 4x3

(1 − x2)
3

=
6x + 2x3

(1 − x2)
3 =

2x
�
3 + x2

�

(1 − x2)
3

8
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Second, we find all the potential inflection points, i.e. the points where h��(x) is 0 or

undefined. h��(x) =
2x
�
3 + x2

�

(1 − x2)
3 = 0 exactly when either x = 0 or when 3 + x2 = 0 (which

can’t happen because 3 + x2 ≥ 3 > 0 for all x). h��(x) =
2x
�
3 + x2

�

(1 − x2)
3 is defined and

continuous unless 1 − x2 = 0, i.e. when x = ±1, which are the points where h(x) has
vertical asymptotes. Thus x = 0 is the only possible point of inflection. Third, we test it
to see if it really is, building the usual table:

x < −1 ∈ (−1, 0) 0 ∈ (0, 1) > 1
h��(x) + − 0 + 1

concavity ↑ ↓ ↑ ↓

Thus x = 0 is indeed an inflection point of h(x).

vii. (Graph) Here is the graph of h(x) = x
1−x2 :

Cheating just a little, it was generated using the following Maple command:

> plot([[s,s/(1-s^2),s=-4..-1],[s,s/(1-s^2),s=-1..1],

[s,s/(1-s^2),s=1..4]],x=-4..4,y=-3..3);

�

6. Show that a cone with base radius 1 and height 2 has volume 2
3π.

Hint: It’s a solid of revolution . . .

Solution. Following the hint, we need to realize the cone as a solid of revolution. One
can obtain a (“right-circular”) cone by rotating a right-angled triangle whose base is a
radius of the base of the cone and whose altitude is the axis of symmetry of the cone. The
hypotenuse of the triangle then runs along the surface of the cone from the tip to the base.
We will set up our coordinate system so that the origin is at the right angle of the triangle,
the x-axis runs along the base (the side that is the radius of the cone), and the y-axis runs
along the altitude (the side that is the axis of symmetry of the cone). Since the cone has

9
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base radius 1 and height 2, the hypotenuse of the triangle is the line segment joining (0, 2)
to (1, 0).as in the diagram. It is not hard to work out that the equation of the line forming
the hypotenuse of the triangle is y = −2x + 2.

Thus we are trying to find the volume of the solid of revolution obtained by revolving
the region bounded by x = 0, y = 0, and y = −2x + 2 about the y-axis, i.e. about the line
x = 0. The volume can be computed readily using either the disk/washer method or the
method of cylindrical shells. Since we used disks in the solution to 3i (note that the solid
of revolution there was a cone as well), we will use cylindrical shells here.

Since we revolved the region about the y-axis, a typical shell is obtained by revolving
a vertical cross-section of the region, that is, one for a fixed value of x, about the y-axis.
The shell for a given value of x has radius r = x and height h = y − 0 = −2x + 2, and
so has surface area 2πrh = 2πx(−2x + 2) = 4π

�
x − x2

�
. Note that since we revolved the

region about the y-axis and are using shells, we need to integrate with respect to x, and
the possible values of x in the triangle are 0 ≤ x ≤ 1. Thus the volume of the cone is:

Volume =

� 1

0

2πrh dx =

� 1

0

4π
�
x − x2

�
dx = 4π

�
x2

2
− x3

3

�����
1

0

= 4π

��
12

2
− 13

3

�
−
�

02

2
− 03

3

��
= 4π

��
1

2
− 1

3

�
− 0

�

= 4π
1

6
=

2

3
π �
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7. Do all four (4) of a–d.

a. Use Taylor’s formula to find the Taylor series of f(x) = sin(x) at a = 0. [7]

b. Determine the radius and interval of convergence of this Taylor series. [4]

c. Find the Taylor series of g(x) = x sin(x) at a = 0 by multiplying the Taylor series
for f(x) = sin(x) by x. [1]

d. Use Taylor’s formula and your series from c to compute g(16)(0). [3]

Solution to a. Recall that the Taylor series of f(x) at a = 0 is
�∞

n=0
f(n)(0)

n! xn, so we’ll
need to know what the values of the nth derivatives of f(x) = sin(x) are at 0:

n f (n)(x) f (n)(0)
0 sin(x) 0
1 cos(x) 1
2 − sin(x) 0
3 − cos(x) −1
4 sin(x) 0
5 cos(x) 1
6 − sin(x) 0
...

...
...

2k (−1)k sin(x) 0
2k + 1 (−1)k cos(x) (−1)k

...
...

...

Note that f (n)(0) = 0 when n is even, and alternates between 1 and −1 when n is odd. It

follows that the Taylor series of f(x) = sin(x) at a = 0 is
∞�

k=0

(−1)k

(2k + 1)!
x2k+1. �

Solution to b. We will use the Ratio Test to find the radius of convergence.

lim
k→∞

����
ak+1

ak

���� = lim
k→∞

������

(−1)k+1

(2(k+1)+1)!x
2(k+1)+1

(−1)k

(2k+1)!x
2k+1

������
= lim

k→∞

����
(−1)k+1x2k+3

(2k + 3)!
· (2k + 1)!

(−1)kx2k+1

����

= lim
k→∞

����
(−1)x2

(2k + 3)(2k + 2)

���� = lim
k→∞

x2

(2k + 3)(2k + 2)
= 0 ,

since x2 → x2 and (2k+3)(2k+2) → ∞ as k → ∞. It follows that the series converges (ab-
solutely) for all x, i.e. the radius of convergence is R = ∞ and the interval of convergence
is (−∞,∞). �
Solution to c. If g(x) = x sin(x) then the Taylor series at a = 0 of g(x) should be the
Taylor series for f(x) = sin(x) multiplied by by x:

∞�

n=0

g(n)(0)

n!
xn = x

∞�

n=0

f (n)(0)

n!
xn = x

∞�

k=0

(−1)k

(2k + 1)!
x2k+1 =

∞�

k=0

(−1)k

(2k + 1)!
x2k+2 �

11
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Solution to d. By Taylor’s formula the coefficient of x16 in the Taylor series of g(x)

is
g(16)(0)

16!
. x16 occurs in

∞�

k=0

(−1)k

(2k + 1)!
x2k+2 when 2k + 2 = 16, i.e. when k = 7. The

coefficient of x16 is therefore
(−1)7

(2 · 7 + 1)!
=

−1

15!
. We compare this to the coefficient given

by Taylor’s formula,
g(16)(0)

16!
=

−1

15!
, and solve for g(16)(0) = 16!

−1

15!
= −16. �

[Total = 100]

Part Z. Bonus problems! Do them (or not), if you feel like it.

ln
�

1
e

�
. Does lim

n→∞

��
n�

k=1

1

k

�
− ln(n)

�
exist? Explain why or why not. [2]

Solution. It does exist. The real number computed by this limit is often called the
Euler-Mascheroni constant, about which surprisingly little is known. (For example, we
don’t even know if it is rational or irrational.) The Wikipedia article about it at

http://en.wikipedia.org/wiki/Euler-mascheroni constant

is good place to start learning about it. A little searching (not in the article just referred
to, although the graph there interpreting the limit as an area is a clue) should turn up a
proof the limit exists. �
ln
�

1
1

�
. Write a haiku touching on calculus or mathematics in general. [2]

haiku?

seventeen in three:
five and seven and five of

syllables in lines

Solution. You’re on your own on this one! �
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Mathematics 1100Y – Calculus I: Calculus of one variable
Trent University, Summer 2011

Solutions to the Quizzes

Quiz #1. Wednesday, 11 May, 2011. [10 minutes]

1. Compute lim
x→−3

x + 3

x2 − 9
using the appropriate limit laws and algebra. [5]

Solution. Note that lim
x→−3

(x+3) = −3+3 = 0 and lim
x→−3

(x2−9) = (−3)2−9 = 9−9 = 0,

so we can’t use the limit law for quotients lest we divide by 0. We will resort to algebra
instead, using the fact that x2 − 9 = (x + 3)(x − 3). Then

lim
x→−3

x + 3

x2 − 9
= lim

x→−3

x + 3

(x + 3)(x − 3)
= lim

x→−3

1

x − 3

=
1

lim
x→−3

(x − 3)
=

1

−3 − 3
=

1

−6
= −1

6
. �

Quiz #2. Monday, 16 May, 2011. [10 minutes]

Do one of questions 1 or 2.

1. Use the ε-δ definition of limits to verify that lim
x→1

(3x − 2) = 1. [5]

Solution. We need to check that for any ε > 0 there is a δ > 0 such that if |x − 1| < δ,
then |(3x − 2) − 1| < ε. As usual, we will try to reverse-engineer the required δ. Suppose
ε > 0 is given. Then

|(3x − 2) − 1| < ε ⇐⇒ |3x − 3| < ε

⇐⇒ |3(x − 1)| < ε

⇐⇒ |x − 1| <
ε

3
.

Since very step above is reversible, if |x − 1| <
ε

3
, then |(3x − 2) − 1| < ε. Hence δ =

ε

3
wil do the job, and so, by the ε-δ definition of limits, lim

x→1
(3x − 2) = 1. �

2. Find the x- and y-intercepts and all the horizontal asymptotes of f(x) =
x2

x2 + 1
, and

sketch its graph. [5]

Solution. i. (Intercepts) Since f(0) =
02

02 + 1
=

0

1
= 0, the y-intercept is the point

(0, 0). f(x) =
x2

x2 + 1
= 0 is only possible when x = 0, so the point (0, 0) is also the only

x-intercept.

1
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ii. (Horizontal asymptotes) We check the limits of f(x) as x → ±∞:

lim
x→+∞

x2

x2 + 1
= lim

x→+∞
x2

x2 + 1
·

1
x2

1
x2

= lim
x→+∞

x2

x2

x2

x2 + 1
x2

= lim
x→+∞

1

1 + 1
x2

=
1

1 + 0
= 1

lim
x→−∞

x2

x2 + 1
= lim

x→−∞
x2

x2 + 1
·

1
x2

1
x2

= lim
x→−∞

x2

x2

x2

x2 + 1
x2

= lim
x→−∞

1

1 + 1
x2

=
1

1 + 0
= 1

(Note that 1
x2 → 0 as x → ±∞.) It follows that f(x) has y = 1 as a horizontal asymptote

in both directions.

iii. (Graph) Note that since x2 < x2 + 1, 0 ≤ x2

x2 + 1
< 1. Together with the information

obtained above, this means that the graph of f(x) looks like:

I cheated a bit to draw this, of course; this graph was made by Maple with the
command:

> plot(x^2/(x^2+1), x=-5..5, y=-1..2);

The “>” is Maple’s prompt. �

Quiz #3. Wednesday, 18 May, 2011. [10 minutes]

1. Use the limit definition of the derivative to compute f �(a) for f(x) =
1

x
. (You may

assume that a �= 0.) [5]

Solution. By the limit definition of the derivative,

f �(a) = lim
h→0

f(a + h) − f(a)

h
= lim

h→0

1
a+h − 1

a

h
= lim

h→0

1

h
· a − (a + h)

(a + h)a

= lim
h→0

1

h
· −h

(a + h)a
= lim

h→0

−1

(a + h)a
=

−1

(a + 0)a
=

−1

a2
. �
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Quiz #4. Wednesday, 25 May, 2011. [10 minutes]

1. Compute f �(x) for f(x) = ln

�
x

1 + x2

�
. [5]

Solution. Using the Chain Rule and Quotient Rule at the key steps, and simplifying as
much as can easily be done at the end:

f �(x) =
d

dx

�
ln

�
x

1 + x2

��

=
1
x

1+x2

· d

dx

�
x

1 + x2

�

=
1 + x2

x
·

dx
dx ·

�
1 + x2

�
− x · d

dx

�
1 + x2

�

(1 + x2)
2

=
1

x
· 1 ·

�
1 + x2

�
− x · (0 + 2x)

1 + x2

=
1

x
· 1 + x2 − 2x2

1 + x2

=
1

x
· 1 − x2

1 + x2

=
1 − x2

x (1 + x2)
�

Quiz #5. Monday, 30 May, 2011. [10 minutes]

Do one of questions 1 or 2.

1. Find
dy

dx
at the point (2, 2) on the curve defined by x =

√
x + y. [5]

Solution i. We differentiate both sides of the equation defining the curve,

1 =
dx

dx
=

d

dx

√
x + y =

1

2
√

x + y
· d

dx
(x + y) =

1

2
√

x + y
·
�

dx

dx
+

dy

dx

�
=

1 + dy
dx

2
√

x + y
,

and then solve for
dy

dx
,

1 + dy
dx

2
√

x + y
= 1 =⇒ 1 +

dy

dx
= 2

√
x + y =⇒ dy

dx
= 2

√
x + y − 1 .

It follows that
dy

dx

����
(x,y)=(2,2)

= 2
√

2 + 2 − 1 = 2
√

4 − 1 = 2 · 2 − 1 = 4 − 1 = 3. �

Solution ii. We solve for y first,

x =
√

x + y =⇒ x2 = x + y =⇒ y = x2 − x ,

3
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and then differentiate,
dy

dx
=

d

dx

�
x2 − x

�
= 2x − 1. It follows that

dy

dx

����
(x,y)=(2,2)

=

2 · 2 − 1 = 4 − 1 = 3. �

2. Find
dy

dx
at x = e for y = ln (xln(x)). [5]

Solution i. We differentiate directly, using the Chain and Product Rules:

dy

dx
=

d

dx
ln (xln(x)) =

1

xln(x)
· d

dx
(xln(x)) =

1

xln(x)
·
��

dx

dx

�
· ln(x) + x ·

�
d

dx
ln(x)

��

=
1

xln(x)
·
�

1 · ln(x) + x · 1

x

�
=

ln(x) + 1

xln(x)

It follows that
dy

dx

����
x=e

=
ln(e) + 1

eln(e)
=

1 + 1

e · 1
=

2

e
. �

Solution ii. We rewrite y using the properties of logarithms, y = ln (xln(x)) = ln(x) +
ln (ln(x)), and then differentiate, using the Sum and Chain Rules:

dy

dx
=

d

dx
(ln(x) + ln (ln(x))) =

1

x
+

1

ln(x)
· d

dx
ln(x) =

1

x
+

1

ln(x)
· 1

x
=

1

x

�
1 +

1

ln(x)

�

It follows that
dy

dx

����
x=e

=
1

e

�
1 +

1

ln(e)

�
=

1

e

�
1 +

1

1

�
=

2

e
. �

Quiz #6. Wednesday, 1 June, 2011. [15 minutes]

1. A 3 m long, very stretchy, bungee cord is suspended from a hook 4 m up on a wall.
The other end of the cord is grabbed by a child who runs directly away from the wall
at 2 m/s, holding the end of the cord 1 m off the ground, stretching the cord in the
process. How is the length of the cord changing at the instant that the child’s end of
the cord is 4 m away from the wall? [5]

4
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Solution. Call the distance the child is from the wall x and observe that the bungee cord
forms the hypotenuse of a right triangle with base x and height 4 − 1 = 3. (Recall that
the child holds the end of the cord 1 m above the ground, while the top end of the cord is
attached to the wall 4 m above the ground.) The fact that the child is running at 2m/s

amounts to saying that
dx

dt
= 2.

If we denote the length of the bungee cord by b, then we have x2 + 32 = b2 by the

Pythagorean theorem, and are trying to discover what
db

dt
is when x = 4.

We first differentiate both sides of the equation,

x2 + 32 = b2 =⇒ d

dt

�
x2 + 32

�
=

d

dt
b2 =⇒ 2x

dx

dt
+ 0 = 2b

db

dt
,

and solve for
db

dt
,

db

dt
=

2x

2b
· dx

dt
=

x

b
· dx

dt
.

We know that
dx

dt
= 2 and that x = 4 at the instant in question. It follows from

x2 + 32 = b2 that b =
√

x2 + 32, so b =
√

42 + 32 =
√

16 + 9 =
√

25 = 5 when x = 4.

Thus, when x = 4,
db

dt
=

x

b
· dx

dt
=

4

5
· 2 =

8

5
= 1.6 m/s. �
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Quiz #7. Monday, 6 June, 2011. [15 minutes]

1. Find any and all intercepts, intervals of increase and decrease, local maxima and
minima, and vertical and horizontal asymptotes, of y = xe−x, and sketch this curve
based on the information you obtained. [5]

Bonus: Find any and all the points of inflection of this curve too. [1]

Hint: You may assume that lim
x→+∞

xe−x = 0. For lim
x→−∞

xe−x you’re on your own.

Solution. Here goes!

i. (Domain) The expression xe−x is defined for all x. Since it is a product of continuous
functions, it is continuous too. It follows, in particular, that there are no vertical
asymptotes.

ii. (Intercepts) For the y-intercept we plug in x = 0, then y = 0e−0 = 0 · 1 = 0. For the
x-intercept, note that since e−x > 0 for all x, xe−x = 0 exactly when x = 0. Thus the
origin, (0, 0) is both the y- and the only x-intercept.

iii. (Vertical asymptotes) None, for the reasons noted in i above.

iv. (Horizontal asymptotes) The hint tells us that we can assume that lim
x→+∞

xe−x = 0,

so curve has the horizontal asymptote y = 0 in the +ve direction. On the other hand,
since e−x → +∞ as x → −∞, lim

x→−∞
xe−x = −∞, there is no horizontal asymptote

in the −ve direction.

v. (Increase, decrease, maxima, & minima) First, we differentiate, using the Product and
Chain Rules:

dy

dx
=

d

dx

�
xe−x

�
=

�
d

dx
x

�
· e−x + x ·

�
d

dx
e−x

�
= 1 · e−x + x · e−x · d

dx
(−x)

= e−x + xe−x(−1) = (1 − x)e−x

Since e−x > 0 for all x, it follows that:

dy

dx
= (1 − x)e−x

>
=
<

0 ⇐⇒ (1 − x)
>
=
<

0 ⇐⇒ x
<
=
>

1

Building the usual table:

x (−∞, 1) 1 (1,∞)
y ↑ max ↓
dy
dx + 0 −

In words: y = xe−x is increasing on (∞, 1), has a maximum at 1, and is decreasing
on (1, +∞). Note that since y = xe−x is defined and continuous everywhere, the
maximum is an absolute maximum. From our work looking horizontal asymptotes in
iv above, it is clear that there is no absolute minimum.
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vi. (Bonus – Points of inflection) We differentiate
dy

dx
, using the Product and Chain Rules,

to get d2y
dx2 :

d2y

dx2
=

d

dx

�
dy

dx

�
=

d

dx

�
(1 − x)e−x

�
=

�
d

dx
(1 − x)

�
· e−x + (1 − x) ·

�
d

dx
e−x

�

= (−1) · e−x + (1 − x) · e−x · d

dx
(−x)

= −e−x + (1 − x)e−x(−1) = (x − 2)e−x

Since e−x > 0 for all x, it follows that:

d2y

dx2
= (x − 2)e−x

>
=
<

0 ⇐⇒ (x − 2)
>
=
<

0 ⇐⇒ x
>
=
<

2

Thus y = xe−x is concave down on (−∞, 2) and concave up on (2, +∞), so x = 2
gives the only point of inflection.

vii. (Graph) The following was drawn using Maple with the command

> plot(x*exp(-x),x=-2..5);

That’s all, folks! �
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Quiz #8. Monday, 13 June, 2011. [10 minutes]

1. Compute lim
x→∞

x2

ex
. [5]

Solution. Since x2 → ∞ and ex → ∞ as x → ∞, we can apply l’Hôpital’s Rule.

lim
x→∞

x2

ex
= lim

x→∞

d
dxx2

d
dxex

= lim
x→∞

2x

ex

At this point, note that 2x → ∞ and ex → ∞ as x → ∞, so we can apply l’Hôpital’s Rule
again. Thus

lim
x→∞

x2

ex
= lim

x→∞
2x

ex
= lim

x→∞

d
dx (2x)

d
dxex

= lim
x→∞

2

ex
= 0,

since 2 → 2 and ex → ∞ as x → ∞. �

Quiz #9. Monday, 20 June, 2011. [10 minutes]

Do one of questions 1, 2, or 3.

1. Compute
� 2

1
(x + 1) dx using the Right-Hand Rule. [5]

Hint: You may assume that 1 + 2 + 3 + · · · + n =
n�

i=1

i = n(n+1)
2 .

Solution. We’ll throw the Right-Hand Rule formula,

� b

a

f(x) dx = lim
n→∞

n�

i=1

b − a

n
f

�
a + i

b − a

n

�
,

at this problem and hope we survive the algebra! Note that f(x) = x + 1 in this case.

� 2

1

(x + 1) dx = lim
n→∞

n�

i=1

2 − 1

n
f

�
1 + i

2 − 1

n

�
= lim

n→∞

n�

i=1

1

n
f

�
1 +

i

n

�

= lim
n→∞

n�

i=1

1

n

��
1 +

i

n

�
+ 1

�
= lim

n→∞
1

n

n�

i=1

�
2 +

i

n

�

= lim
n→∞

1

n

��
n�

i=1

2

�
+

�
n�

i=1

i

n

��
= lim

n→∞
1

n

�
2n +

1

n

�
n�

i=1

i

��

= lim
n→∞

1

n

�
2n +

1

n
· n(n + 1)

2

�
= lim

n→∞
1

n

�
2n +

n + 1

2

�

= lim
n→∞

1

n

�
5

2
n +

1

2

�
= lim

n→∞

�
5

2
+

1

2n

�
=

5

2
+ 0 =

5

2
,

since 1
2n → 0 as n → ∞. �
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2. Compute
� 3

−1
(x + 1)2 dx. [5]

Solution. We’ll expand (x + 1)2 and then use the Power, Sum, and Constant Rules (all
at once!) to find the antiderivative and (implicitly!) apply the Fundamental Theorem of
Calculus to evaluate the definite integral.

� 3

−1

(x + 1)2 dx =

� 3

−1

�
x2 + 2x + 1

�
dx =

�
x3

3
+ 2

x2

2
+ x

�����
3

−1

=

�
33

3
+ 32 + 3

�
−
�

(−1)3

3
+ (−1)2 + (−1)

�

= (9 + 9 + 3) −
�
−1

3
+ 1 − 1

�
= 21 −

�
−1

3

�

=
63

3
+

1

3
=

64

3

Note that because we were finding the antiderivative to evaluate an indefinite integral, we
did not worry about adding a generic constant of C to the antiderivative. (If we had, it
would have cancelled out when we evaluated the definite integral anyway.) �

3. Compute
�

sin(x) cos(x) dx. [5]

Solution. This is a job for the Substitution and Power Rules. We will use the substitution

u = sin(x), so
du

dx
= sin(x) and du = sin(x) dx:

�
sin(x) cos(x) dx =

�
u du =

u2

2
+ C =

sin2(x)

2
+ C

Note that since we were computing an indefinite integral, we need to find the most general
possible antiderivative and so must add the generic constant C. �
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Quiz #10. Wednesday, 22 June, 2011. [10 minutes]

1. Find the area of the region between the curves y = cos(x) and y = sin(x), where
0 ≤ x ≤ π. [5]

Hint: Recall that sin
�
π
4

�
= cos

�
π
4

�
= 1√

2
.

Solution. From x = 0 to x = π, cos(x) starts at 1, decreases to 0 at x = π
2 , and decreases

some more to −1, while sin(x) starts at 0, increases to 1 at x = π
2 , and then decreases to

0. The two graphs cross once in the interval [0, π]: cos(x) = sin(x) at x = π
4 . (Hint!) It

follows that cos(x) ≥ sin(x) for 0 ≤ x ≤ π
4 , and sin(x) ≥ cos(x) for pi

4 ≤ x ≤ π.
It is a little easier to see all this if you can visualize or draw the graphs. Here is a

graph produced by Maple:

> plot([[t,cos(t),t=0..Pi],[t,sin(t),t=0..Pi]],x=0..Pi,y=-1..1);

We will break up the integral according to our analysis above:

Area =

� π/4

0

[cos(x) − sin(x)] dx +

� π

π/4

[sin(x) − cos(x)] dx

= [sin(x) − (− cos(x))]|π/4
0 + [(− cos(x)) − sin(x)]|ππ/4

= [sin(x) + cos(x)]|π/4
0 + [− cos(x) − sin(x)]|ππ/4

=
�
sin
�π

4

�
+ cos

�π
4

��
− [sin (0) + cos (0)]

+ [− cos (π) − sin (π)] −
�
− cos

�π
4

�
− sin

�π
4

��

=

�
1√
2

+
1√
2

�
− [0 + 1] + [−(−1) − 0] −

�
− 1√

2
− 1√

2

�

=
2√
2
− 1 + 1 −

�
− 2√

2

�
=

4√
2

= 2
√

2 �
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Quiz #11. Monday, 27 June, 2011. [10 minutes]

1. Sketch the solid obtained by rotating the region bounded by y =
√

x and y = 0, where
0 ≤ x ≤ 4, about the x-axis and find its volume. [5]

Solution. Here’s a sketch of the solid, with the original region shaded in:

We will use the washer method to find the volume of the solid. Since we are using
washers and rotated about a horizontal line, we will be integrating with respect to x, the
variable belonging to the horizontal axis. The cross section of the solid at x has outside
radius R = y =

√
x and inside radius r = 0 (so it is actually a disk). Plugging these into

the volume formula for the washer method gives:

Volume =

� 4

0

π
�
R2 − r2

�
dx = π

� 4

0

��√
x
�2 − 02

�
dx = π

� 4

0

(x − 0) dx

= π

� 4

0

x dx = π
x2

2

����
4

0

= π

�
42

2
− 02

2

�
= π

�
16

2
− 0

�
= 8π

Note that the limits for the integral, as always, come from the original region. �
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Quiz #12. Wednesday, 29 June, 2011. [10 minutes]

1. Sketch the solid obtained by rotating the region between y = ex and y = 1, where
0 ≤ x ≤ 1, about the y-axis and find its volume. [5]

Solution. Here’s a sketch of the solid, with the original region outlined in a bolder line
and with a typical cylindrical shell drawn in as well:

We will use the method of cylindrical shells to find the volume of the solid. Since we
are using shells and rotated about a vertical line (the y-axis, otherwise known as x = 0),
we will be integrating with respect to x, the variable belonging to the horizontal axis. The
cylindrical shell at x has radius r = x − 0 = x and height h = ex − 1. Plugging these into
the volume formula for the shell method gives:

Volume =

� 1

0

2πrh dx =

� 1

0

2πx (ex − 1) dx = 2π

� 1

0

(xex − x) dx

= 2π

� 1

0

xex dx − 2π

� 1

0

x dx Use integration by parts on the

first piece, with u = x and v� = ex, so u� = 1 and v = ex.

(Recall the integration by parts formula:

�
uv� dx = uv −

�
u�v dx.)

= 2π

�
xex|10 −

� 1

0

1ex dx

�
− 2π

x2

2

����
1

0

= 2π
�
1ee − 0e0 − ex|10

�
− 2π

�
12

2
− 02

2

�

= 2π
�
e − 0 −

�
e1 − e0

��
− 2π

�
1

2
− 0

�
= 2π[e − e + 1] − 2π

1

2
= 2π − π = π

Note that the limits for the integral, as always, come from the original region. �
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Quiz #13. Monday, 4 July, 2011. [10 minutes]

1. Compute

�
sec3(x) tan3(x) dx. [5]

Solution. We’ll use a combination of the trig identity tan2(x) = sec2(x)− 1 and the fact

that
d

dx
sec(x) = sec(x) tan(x) to set up a suitable substitution:

�
sec3(x) tan3(x) dx =

�
sec2(x) tan2(x) sec(x) tan(x) dx

=

�
sec2(x)

�
sec2(x) − 1

�
sec(x) tan(x) dx

Substitute u = sec(x), so du = sec(x) tan(x) dx.

=

�
u2
�
u2 − 1

�
du =

� �
u4 − u2

�
du

=
u5

5
− u3

5
+ C =

sec5(x)

5
− sec3(x)

5
+ C �

Quiz #14. Monday, 11 July, 2011. [15 minutes]

1. Compute

�
1

x4 + x2
dx. [5]

Solution. Since the integrand is a rational function, we will compute the integral using
partial fractions. The first thing that we need to do is to factor the denominator. It is
easy to see that x4 + x2 =

�
x2 + 1

�
x2.

Since x2+1 is irreducible (as x2+1 ≥ 1 > 0 for all x, it has no roots) and x2 = (x−0)2

is a repeated linear factor, the partial fraction decomposition of the integrand will have
the form:

1

x4 + x2
=

1

(x2 + 1) x2
=

Ax + B

x2 + 1
+

C

x2
+

D

x

Next, we need to work out what the constants A, B, C, and D are. Combining the
right-hand side of the above equation over the common denominator of

�
x2 + 1

�
x2 and

collecting like terms in the numerator gives:

1

(x2 + 1) x2
=

Ax + B

x2 + 1
+

C

x2
+

D

x
=

(Ax + B)x2 + C
�
x2 + 1

�
+ D

�
x2 + 1

�
x

(x2 + 1) x2

=
Ax3 + Bx2 + Cx2 + C + Dx3 + Dx

(x2 + 1) x2
=

(A + D)x3 + (B + C)x2 + Dx + C

(x2 + 1) x2

Comparing numerators, we have 1 = (A + D)x3 + (B + C)x2 + Dx + C, so we must have
A + D = 0, B + C = 0, D = 0, and C = 1. It follows that A + 0 = 0, so A = 0, and
B + 1 = 0, so B = −1. Thus the partial fraction decomposition of the given integrand is:

1

x4 + x2
=

0x + (−1)

x2 + 1
+

1

x2
+

0

x
=

−1

x2 + 1
+

1

x2

13

264



Hence, using K for the generic constant to avoid confusing it with the C used above,

�
1

x4 + x2
dx =

� � −1

x2 + 1
+

1

x2

�
dx =

� −1

x2 + 1
dx +

�
1

x2
dx

= −
�

1

x2 + 1
dx +

�
x−2 dx = − arctan(x) + (−1)x−1 + K

= − arctan(x) − 1

x
+ K . �

Quiz #15. Wednesday, 13 July, 2011. [10 minutes]

1. Compute

� ∞

1

1

x2
dx. [5]

Solution. This is an improper integral, so we need to take a limit:

� ∞

1

1

x2
dx = lim

t→∞

� t

1

1

x2
dx = lim

t→∞

� t

1

x−2 dx = lim
t→∞

−x−1
��t
1

= lim
t→∞

− 1

x

����
t

1

= lim
t→∞

�
−1

t
−
�
−1

1

��
= lim

t→∞

�
−1

t
+ 1

�
= −0 + 1 = 1

since 1
t → 0 as t → ∞. �

Quiz #16. Monday, 18 July, 2011. [12 minutes]

Do one of questions 1 or 2.

1. Find the arc-length of the curve y =
2

3
x3/2, where 0 ≤ x ≤ 3. [5]

Solution. First,
dy

dx
=

d

dx

2

3
x3/2 =

2

3
· 3

2
x1/2 = x1/2 =

√
x. Plugging this into the

arc-length formula gives:

arc-length =

� 3

0

�
1 +

�
dy

dx

�2

dx =

� 3

0

�
1 +

�√
x
�2

dx =

� 3

0

√
1 + x dx

Substitute u = x + 1, so du = dx and
x 0 3
u 1 4

.

=

� 4

1

√
u du =

� 4

1

u1/2 du =
2

3
u3/2

����
4

1

=
2

3

�
43/2 − 13/2

�
=

2

3
(8 − 1) =

14

3
�

14
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2. Find the area of the surface of revolution obtained by rotating the curve y = 1− 1

2
x2,

where 0 ≤ x ≤
√

3, about the y-axis. [5]

Solution. First,
dy

dx
=

d

dx

�
1 − 1

2
x2

�
= 0 − 1

2
2x = −x. Second, since we are rotating

the curve about the y-axis, r = x − 0 = x. Plugging these into the formula for the area of
a surface of revolution gives:

area =

� √
3

0

2πx

�
1 +

�
dy

dx

�2

dx =

� √
3

0

2πx

�
1 + (−x)

2
dx = π

� √
3

0

2x
�

1 + x2 dx

Substitute u = 1 + x2, so du = 2x dx and
x 0

√
3

u 1 4
.

= π

� 4

1

√
u du = π

� 4

1

u1/2 du = π
2

3
u3/2

����
4

1

=
2

3
π
�
43/2 − 13/2

�
=

2

3
π (8 − 1) =

14

3
π �

Quiz #17. Wednesday, 19 July, 2011. [12 minutes]

Do one of questions 1 or 2.

1. Sketch the curve r = θ, 0 ≤ θ ≤ π, in polar coordinates and the area of the region
between the curve and the origin. [5]

Solution. Cheating a bit, we use Maple to graph the curve:

> plots[polarplot](theta,theta=0..Pi);

To find the area of the region between curve and the origin, we plug the curve into
the area formula for polar regions:

A =

�

C

1

2
r2dθ =

� π

0

1

2
θ2dθ =

1

2
· 1

3
θ3

����
π

0

=
1

6
π3 − 1

6
03 =

1

6
π3 �
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2. For which values of x does the series
∞�

n=0
xn+2 = x2 + x3 + x4 + · · · converge? What

is the sum when it does converge? [5]

Solution.
∞�

n=0
xn+2 = x2 + x3 + x4 + · · · is a geometric series with first term a = x2 and

common ratio r = x between successive terms. It follows that the series converges if either
a = x2 = 0, i.e. x = 0, or |r| = |x| < 0, i.e. −1 < x < 1. Since −1 < 0 < 1, this means
that the series converges exactly when −1 < x < 1.

When the series converges, it must converge to the value given by the formula for the

sum of a geometric series, namely,
a

1 − r
=

x2

1 − x
. �

Quiz #18. Monday, 25 July, 2011. [12 minutes]

1. Determine whether the series
∞�

n=1

1

n2 + 2n
converges or diverges. [5]

Solution. We will use the (basic form of the) Comparison Test to show that the given
series converges. Since increasing a denominator makes the fraction smaller, we have both

1

n2 + 2n
<

1

n2
and

1

n2 + 2n
<

1

2n

for all n. (Note that all the terms above will always be positive for n ≥ 1.) Either
comparison will do the trick:

Comparison i. The series

∞�

n=1

1

n2
= 1 +

1

4
+

1

9
+

1

16
+ · · · converges by the Integral Test.

As f(x) =
1

x2
is a positive, decreasing, and continuous function for 1 ≤ x < ∞ such that

1

n2
= f(n), the series

∞�

n=1

1

n2
converges if and only if the improper integral

� ∞

1

1

x2
dx

converges. Since
� ∞

1

1

x2
dx = lim

t→∞

� t

1

1

x2
dx = lim

t→∞
− 1

x

����
t

1

= lim
t→∞

��
−1

t

�
−
�
−1

1

��
= (−0) − (−1) = 1

(note that 1
t → 0 as t → ∞), it follows that the series

∞�

n=1

1

n2
converges. In turn, it follows

by the Comparison Test that

∞�

n=1

1

n2 + 2n
converges.

Comparison ii. The series
∞�

n=1

1

2n
=

1

2
+

1

4
+

1

8
+

1

16
+· · · converges because it is a geometric

series with common ratio r =
1

2
and

����
1

2

���� =
1

2
< 1. It follows by the Comparison Test that

∞�

n=1

1

n2 + 2n
converges. �
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Quiz #19. Wednesday, 27 July, 2011. [12 minutes]

Do one of questions 1 or 2.

1. Determine whether the series
∞�

n=1

(−2)n

(n + 1)!
converges absolutely, converges condition-

ally, or diverges. [5]

Solution. We will use the Ratio Test:

lim
n→∞

����
an+1

an

���� = lim
n→∞

������

(−2)n+1

((n+1)+1)!

(−2)n

(n+1)!

������
= lim

n→∞

����
(−2)n+1

(n + 2)!
· (n + 1)!

(−2)n

����

= lim
n→∞

����
−2

(n + 2)

���� = lim
n→∞

2

n + 2
= 0 ,

since n + 2 → ∞ as n → ∞. 0 < 1, so it follows from the Ratio Test that the given series
converges absolutely. �

2. Determine whether the series
∞�

n=1

(−1)nen

n
converges absolutely, converges condition-

ally, or diverges. [5]

Solution. We will try the Alternating Series Test, which requires checking that the series
is indeed alternating, that the terms are decreasing in absolute value, and that the limit
of the terms is 0.

First, we check if the series is indeed alternating. Since n > 0 and en > 0 for n ≥ 1,
the (−1)n forces the terms of the given series to alternate in sign. So far, so good.

Second, we check whether the terms decrease in absolute value. Is it the case that��� (−1)n+1en+1

n+1

��� = en+1

n+1 < en

n =
��� (−1)nen

n

��� for all n (past some point)? Observe that

en+1

n + 1
<

en

n
⇐⇒ nen+1 < (n + 1)en ⇐⇒ ne < n + 1 ⇐⇒ e < 1 +

1

n
,

which last is not true for any n ≥ 1 because e > 2 ≥ 1+ 1
n . It follows that the Alternating

Series Test cannot be used to conclude that the series converges. (Which, unfortunately,
is not the same as being able to conclude that the series diverges.) Nevertheless, it pays
to check the last condition required by the Alternating Series Test.

Third, we check whether the limit of the (absolute values of) the terms is 0:

lim
n→∞

����
(−1)nen

n

���� = lim
n→∞

en

n
= lim

x→∞
ex

x

→ ∞
→ ∞ as x → ∞, so we use l’Hôpital’s Rule.

= lim
x→∞

d
dxex

d
dxx

= lim
x→∞

ex

1
= ∞

Not only does this mean that the Alternating Series Test cannot be used to conclude that
the series converges, but that the series diverges. Failing this part of the Alternating Series
Test amounts to failing the Divergence Test, so it follows that the given series diverges. �
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1. Find dy
dx in any three (3) of a–d. [9 = 3 × 3 each]

a. y =
�
x2 + 1

�3
b. ln(x + y) = 0 c. y = x2ex d. y =

tan(x)

sec(x)

Solution to a. Power and Chain Rules:

dy

dx
=

d

dx

�
x2 + 1

�3
= 3

�
x2 + 1

�2 · d

dx

�
x2 + 1

�
= 3

�
x2 + 1

�2
(2x + 0) = 6x

�
x2 + 1

�2 �

Solution i to b. Solve for y first, then differentiate:

ln(x + y) = 0 =⇒ x + y = eln(x+y) = e0 = 1

=⇒ y = 1 − x =⇒ dy

dx
= 0 − 1 = −1 �

Solution ii to b. Implicit differentiation:

ln(x + y) = 0 =⇒ d

dx
ln(x + y) =

d

dx
0 =⇒ 1

x + y
· d

dx
(x + y) = 0

=⇒ 1

x + y
·
�

1 +
dy

dx

�
= 0 =⇒ 1 +

dy

dx
= (x + y) · 0 = 0

=⇒ dy

dx
= 0 − 1 = −1 �

Solution to c. Product Rule:

dy

dx
=

d

dx

�
x2ex

�
=

�
d

dx
x2

�
· ex + x2 ·

�
d

dx
ex

�
= 2xex + x2ex = x(2 + x)ex �

Solution i to d. Simplify first, y =
tan(x)

sec(x)
=

sin(x)
cos(x)

1
cos(x)

=
sin(x)

cos(x)
· cos(x)

1
= sin(x), then

differentiate, so
dy

dx
=

d

dx
sin(x) = cos(x). �

Solution ii to d. Quotient Rule first, then simplify:

dy

dx
=

d

dx

�
tan(x)

sec(x)

�
=

�
d
dx tan(x)

�
· sec(x) − tan(x) ·

�
d
dx sec(x)

�

sec2(x)

=
sec2(x) · sec(x) − tan(x) · sec(x) tan(x)

sec2(x)
=

sec2(x) − tan2(x)

sec(x)

=
sec2(x) −

�
sec2(x) − 1

�

sec(x)
=

1

sec(x)
=

1
1

cos(x)

= cos(x) �

1
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2. Do any two (2) of a–c. [10 = 2 × 5 each]

a. Use the ε− δ definition of limits to verify that lim
x→2

(x + 1) = 3.

b. Use the limit definition of the derivative to compute f �(0) for f(x) = x3 + x.

c. Compute lim
x→3

x2 − 9

x − 3
.

Solution to a. Suppose an ε > 0 is given. As usual, we attempt to reverse-engineer the
required δ.

|(x + 1) − 3| < ε ⇐⇒ |x − 2| < ε

Since the step taken above is reversible, it follows that if we set δ = ε, then whenever
|x − 2| < δ, we will have |(x + 1) − 3| < ε also, as required.

Hence lim
x→2

(x + 1) = 3 by the ε− δ definition of limits. �

Solution to b. Here goes:

f �(0) = lim
h→0

f(0 + h) − f(0)

h
= lim

h→0

f(h) − f(0)

h
= lim

h→0

�
h3 + h

�
−
�
03 + 0

�

h

= lim
h→0

h3 + h

h
= lim

h→0

�
h2 + 1

�
= 02 + 1 = 1 �

Solution to c. Here goes:

lim
x→3

x2 − 9

x − 3
= lim

x→3

(x + 3)(x − 3)

x − 3
= lim

x→3
(x + 3) = 3 + 3 = 6 �

2
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3. Do any two (2) of a–c. [12 = 2 × 6 each]

a. Each side of a square is increasing at a rate of 3 cm/s. At what rate is the area of the
square increasing at the instant that the sides are 6 cm long?

b. f(x) = e−1/x2

= e−(x−2) has a removable discontinuity at x = 0. What should the
value of f(0) be to make the function continuous at x = 0?

c. What is the smallest possible perimeter of a rectangle with area 36 cm2?

Solution to a. Suppose the we denote the length of a side of the square by s, so its area

will be A = s2. We are given that
ds

dt
= 3 and we wish to know

dA

dt

���� at the instant that

s = 6. We differentiate A, plug in, and then solve.
dA

dt
=

d

dt
s2 = 2s · ds

dt
, so when s = 6,

we get
dA

dt
= 2 · 6 · 3 = 36 cm2/s. �

Solution to b. f(x) being continuous at x = 0 amounts to having f(0) = lim
x→0

f(x), so

we need to compute this limit.

As x → 0,
1

x2
→ +∞ (note that x2 > 0 for all x �= 0), and so − 1

x2
→ −∞. It follows

that lim
x→0

f(x) = lim
x→0

e−1/x2

= lim
t→−∞

et = 0. Thus the value of f(0) should be 0 to make

f(x) continuous at x = 0. �
Solution to c. Suppose a rectangle has height h and base b. Then its perimeter is
P = 2h + 2b and its area is A = bh. Note that both b and h need to be > 0 for any real
rectangle with positive area.

In this case A = bh = 36, so h =
36

b
and P = 2 36

b + 2b = 72
b + 2b, where 0 ≤ b < ∞.

We first find the derivative,
dP

db
=

d

db

�
72

b
+ 2b

�
= −72

b2
+ 2, and then build the usual

table. dP
db = − 72

b2 + 2 = 0 exactly when 2b2 = 72, i.e. b2 = 36, so that b = 6. (Recall that

b must be > 0.) Similarly, dP
db = − 72

b2 + 2 > 0 exactly when 2b2 > 72, i.e. b2 > 36, so that

b > 6, and dP
db = − 72

b2 + 2 < 0 exactly when 2b2 < 72, i.e. b2 < 36, so that b < 6. This
gives the table:

b (0, 6) 6 (6,∞)
P ↓ min ↑
dP
db − 0 +

It follows that P has its only minimum when b = 6, so the smallest possible perimeter of

a rectangle of area 36 cm2 is P =
72

6
+ 2 · 6 = 12 + 12 = 24 cm. Note that this rectangle is

the square with sides of length 6 cm. �

3
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4. Let f(x) =
√

x2 + 1. Find any and all intercepts, vertical and horizontal asymptotes,
and maxima and minima of f(x), and sketch its graph using this information. [9]

Solution. i. (Domain) x2+1 is defined, continuous, differentiable, and ≥ 1 for all x. Since√
t is defined, continuous, and differentiable when t > 0, it follows that f(x) =

√
x2 + 1 is

defined, continuous, and differentiable for all x.

ii. (Intercepts) f(0) =
√

02 + 1 =
√

1 = 1, so the y-intercept is the point (0, 1). Since√
x2 + 1 ≥

√
1 = 1 > 0 for all x, there is no x such that f(x) = 0, i.e. f(x) has no

x-intercepts.

iii. (Vertical asymptotes) Since f(x) is defined and continuous for all x, as noted in i
above, it has no vertical asymptotes.

iv. (Horizontal asymptotes) To compute the relevant limits, observe that as x → ±∞,
x2 + 1 → +∞, and hence

√
x2 + 1 → +∞. Since lim

x→+∞

√
x2 + 1 = +∞ = lim

x→−∞

√
x2 + 1,

f(x) =
√

x2 + 1 has no horizontal asymptotes.

v. (Maxima & minima, etc.) Using the Chain and Power Rules,

f �(x) =
d

dx

�
x2 + 1 =

1

2
√

x2 + 1
· d

dx

�
x2 + 1

�
=

1

2
√

x2 + 1
· (2x + 0) =

x√
x2 + 1

.

It follows that f �(x) = 0 if and only if x = 0. Moreover, since
√

x2 + 1 ≥ 1 > 0 for all x,
f �(x) is < 0 or > 0 exactly when x < 0 or x > 0, respectively. Here is the usual table:

x (−∞, 0) 0 (0, +∞)
f(x) ↓ min ↑
f �(x) + 0 −

Thus f(x) must have a minimum at the sole critical point of x = 0.

vi. (Graph) Cheating a bit and using Maple:

> plot(sqrt(x^2+1),x=-5..5,y=0..5);

�

[Total = 40]

Bonus. Simplify cos (arcsin(x)) as much as you can. [1]

Solution. cos (arcsin(x)) =
�

1 − sin2 (arcsin(x)) =
√

1 − x2 ought to do. �
4
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1. Compute any four (4) of the integrals in parts a-f. [16 = 4 × 4 each]

a.

�
tan2(x) dx b.

� 3/2

0

2(2x + 1)3/2 dx c.

�
xex dx

d.

� π

0

x cos(x) dx e.

�
sec3(x) tan(x) dx f.

� 1

0

�
x2 + 2x + 3

�
dx

Solution to a. We’ll rewrite it using the trig identity tan2(x) = sec2(x) − 1:
�

tan2(x) dx =

� �
sec2(x) − 1

�
dx =

�
sec2(x) dx −

�
1 dx = tan(x) − x + C �

Solution to b. We’ll use the substitution u = 2x + 1, so du = 2 dx and
x 0 3/2
u 1 4

.

� 3/2

0

2(2x + 1)3/2 dx =

� 4

1

u3/2 du =
u5/2

5/2

����
4

1

=
1

5/2

�
45/2 − 15/2

�

=
2

5

�
25 − 15

�
=

2

5
(32 − 1) =

2

5
31 =

62

5
�

Solution to c. We’ll use integration by parts, with u = x and v� = ex, so u� = 1 and
v = ex.�

xex dx =

�
uv� dx = uv −

�
u�v dx = xex −

�
1ex dx = xex − ex + C �

Solution to d. We will also use integration by parts here, with u = x and v� = cos(x),
so u� = 1 and v = sin(x).

� π

0

x cos(x) dx =

� π

0

uv� dx = uv|π0 −
� π

0

u�v dx = x sin(x)|π0 −
� π

0

1 sin(x) dx

= (π sin(π) − 0 sin(0)) − (− cos(x))|π0 = π0 − 0 + cos(x)|π0
= cos(π) − cos(0) = −1 − 1 = −2 �

Solution to e. We’ll use the substitution u = sec(x), so du = sec(x) tan(x) dx.
�

sec3(x) tan(x) dx =

�
sec2(x) sec(x) tan(x) dx =

�
u2 du =

u3

3
+C =

1

3
sec3(x)+C �

Solution to f. The Power Rule is the main tool:
� 1

0

�
x2 + 2x + 3

�
dx =

� 1

0

x2 dx +

� 1

0

2x dx +

� 1

0

3 dx =
x3

3

����
1

0

+ x2
��1
0

+ 3x|10

=

�
13

3
− 03

3

�
+
�
12 − 02

�
+ (3 · 1 − 3 · 0) =

1

3
+ 1 + 3 =

13

3
�

1
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2. Do any two (2) of parts a-e. [12 = 2 × 6 each]

a. Compute

� 3

0

�
9 − x2 dx. What does this integral represent?

b. Sketch the solid obtained by rotating the region bounded by y = x, y = 0, and
x = 2 about the y-axis, and find its volume.

c. Give an example of a function f(x) with f �(x) = 1 −
� x

0

f(t) dt for all x.

d. Sketch the region between y = sin(x) and y = − sin(x) for 0 ≤ x ≤ 2π, and find
its area.

e. Compute

� 2

1

x dx using the Right-hand Rule.

Solution to a. We will use the substitution x = 3 sin(θ), so dx = 3 cos(θ) dθ and
x 0 3
θ 0 π/2

.

� 3

0

�
9 − x2 dx =

� π/2

0

�
9 − 9 sin2(θ) 3 cos(θ) dθ =

� π/2

0

3

�
1 − sin2(θ) 3 cos(θ) dθ

=

� π/2

0

3
�

cos2(θ) 3 cos(θ) dθ =

� π/2

0

3 cos(θ) 3 cos(θ) dθ

=

� π/2

0

9 cos2(θ) dθ = 9

� π/2

0

�
1

2
+

1

2
cos(2θ)

�
dθ

Substitute u = 2θ, so du = 2 dθ and
1

2
du = dθ, and

θ 0 π/2
u 0 π

.

= 9

� π

0

�
1

2
+

1

2
cos(u)

�
1

2
du =

9

4

� π

0

(1 + cos(u)) du

=
9

4
(u + sin(u))

����
π

0

=
9

4
(π + sin(π)) − 9

4
(0 + sin(0))

=
9

4
(π + 0) − 9

4
(0 + 0) =

9

4
π

Since y =
√

9 − x2 implies that x2 + y2 = 32, since we’re taking the positive square
root, and since 0 ≤ x ≤ 3, the integral gives the area of the quarter of the circle of radius
3 centred at the origin that lies in the first quadrant (i.e. where x ≥ 0 and y ≥ 0). �
Solution to b. Here’s a sketch of the solid, with the original region shaded in:

2
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The volume is about as easy to compute with either the washer or the cylindrical shell
method. We’ll do it with shells; since we rotated about a vertical line and are using shells,
we have to integrate with respect to x. The cylindrical shell at x has radius r = x− 0 = x
and height h = x − 0 = x, so its area is 2πrh = 2πxx = 2πx2. We plug this into the
volume formula for shells:

V =

� 2

0

2πrh dx =

� 2

0

2πx2 dx = 2π
x3

3

����
2

0

= 2π
23

3
− 2π

03

3
= 2π

8

3
− 0 =

16

3
π

Note that, as always, the limits for the integral come from the original region. �

Solution to c. First, note that f �(0) = 1−
� 0

0
f(x) dx = 1− 0 = 1. Second, note that it

follows from the Fundamental Theorem of Calculus that

f ��(x) =
d

dx
f �(x) =

d

dx

�
1 −

� x

0

f(t) dt

�
= 0 − f(x) = −f(x) .

So, how many functions do you know such that f ��(x) = −f(x) and f �(0) = 1? Both
sin(x) and cos(x) meet the first requirement. Since d

dx sin(x) = cos(x) and cos(0) = 1,
f(x) = sin(x) does the job. �

Solution to d. Here’s a crude sketch:

Note that between 0 and π, sin(x) ≥ 0, so sin(x) ≥ − sin(x), and between π and 2π,
sin(x) ≤ 0, so − sin(x) ≥ sin(x). It follows that the area of the region is:

A =

� π

0

(sin(x) − (− sin(x))) dx +

� 2π

π

((− sin(x)) − sin(x)) dx

=

� π

0

2 sin(x) dx −
� 2π

π

2 sin(x) dx = −2 cos(x)|π0 − (−2 cos(x))|2ππ
= [−2 cos(π) − (−2 cos(0))] − [−2 cos(2π) − (−2 cos(π))]

= [−2(−1) − (−2 · 1)] − [−2 · 1 − (−2(−1))] = [2 + 2] − [−2 − 2] = 8 �
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Solution to e. We plug into the Right-hand Rule formula, namely
� b

a
f(x) dx =

lim
n→∞

n�
i=1

b−a
n f

�
a + i b−a

n

�
, and chug away. In this case a = 1, b = 2, and f(x) = x.

� 2

1

x dx = lim
n→∞

n�

i=1

2 − 1

n
f

�
1 + i

2 − 1

n

�
= lim

n→∞

n�

i=1

1

n
f

�
1 +

i

n

�

= lim
n→∞

1

n

n�

i=1

�
1 +

i

n

�
= lim

n→∞
1

n

��
n�

i=1

1

�
+

�
n�

i=1

i

n

��

= lim
n→∞

1

n

�
n +

1

n

n�

i=1

i

�
= lim

n→∞
1

n

�
n +

1

n
· n(n + 1)

2

�

= lim
n→∞

1

n

�
n +

n + 1

2

�
= lim

n→∞
1

n

�
3

2
n +

1

2

�

= lim
n→∞

�
3

2
+

1

2n

�
=

3

2
+ 0 =

3

2
�
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3. The region between y =
√

1 − x2 and y = 2x − 2, where 0 ≤ x ≤ 1, is rotated about
the y-axis to make a solid. Do part a and one (1) of parts b or c.

a. Sketch the solid of revolution described above. [3]

b. Find the volume of the solid using the disk/washer method. [9]

c. Find the volume of the solid using the method of cylindrical shells. [9]

Solution to a. Here’s a sketch of the solid, with the original region shaded in:

Anyone for ice cream? �

Solution to b. Since we rotated about a vertical line and are using washers, we have to
integrate with respect to y. y runs from −2 – the y-intercept of y = 2x − 2 – to 1 – the
y-intercept of y =

√
1 − x2 – for the given region. The problem is that the outer radius of

the washer at y is R = x = 1
2y + 1 for −2 ≤ y ≤ 0, but is R = x =

�
1 − y2 for 0 ≤ y ≤ 1,

so we will have to break the integral up accordingly. Note that the inner radius of each
washer is r = 0 either way, so every washer is actually a disk. We plug all this into the
volume formula for the washer method:

V =

� 0

−2

π
�
R2 − r2

�
dy +

� 1

0

π
�
R2 − r2

�
dy

= π

� 0

−2

��
1

2
y + 1

�2

− 02

�
dy + π

� 1

0

���
1 − y2

�2

− 02

�
dy

= π

� 0

−2

�
1

4
y2 + y + 1

�
dy + π

� 1

0

�
1 − y2

�
dy

= π

�
1

4
· y3

3
+

y2

2
+ y

�����
0

−2

+ π

�
y − y3

3

�����
1

0

= π

�
03

12
+

02

2
+ 0

�
− π

�
(−2)3

12
+

(−2)2

2
+ (−2)

�
+ π

�
1 − 13

3

�
− π

�
0 − 03

3

�

= 0 − π

�−8

12
+

4

2
− 2

�
+ π

2

3
− 0 = −π

−2

3
+ π

2

3
=

4

3
π �
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Solution to c. Since we rotated about a vertical line and are using shells, we have
to integrate with respect to x. The cylindrical shell at x has radius r = x and height
h =

√
1 − x2 − (2x − 2) =

√
1 − x2 − 2x + 2. We plug these into the volume formula for

the shell method:

V =

� 1

0

2πrh dx = 2π

� 1

0

x
��

1 − x2 − 2x + 2
�

dx

= 2π

� 1

0

x
�

1 − x2 dx − 2π

� 1

0

2x2 dx + 2π

� 1

0

2x dx

In the first integral, substitute u = 1 − x2, so du = −2x dx and

(−1) du = 2x dx, and change limits accordingly:
x 0 1
u 1 0

= π

� 0

1

√
u(−1) du − 4π

x3

3

����
1

0

+ 2π x2
��1
0

= π

� 1

0

u1/2 du − 4π

�
13

3
− 03

3

�
+ 2π

�
12 − 02

�
= π

u3/2

3/2

����
1

0

− 4

3
π + 2π

= π

�
2

3
13/2 − 2

3
03/2

�
+

2

3
π =

2

3
π +

2

3
π =

4

3
π �

3
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Mathematics 1100Y – Calculus I: Calculus of one variable
Trent University, Summer 2011

Solutions to the Final Examination

Time: 09:00–12:00, on Wednesday, 3 August, 2011. Brought to you by Stefan.

Instructions: Show all your work and justify all your answers. If in doubt, ask!

Aids: Calculator; two (2) aid sheets [all 12 sides]; one (1) brain [may be caffeinated].

Part I. Do all three (3) of 1–3.

1. Compute
dy

dx
as best you can in any three (3) of a–f. [15 = 3 × 5 each]

a. x = ex+y b. y =

� −x

0

tet dt c. y = x2ln(x)

d. y =
x

cos(x)
e. y = sec2 (arctan(x)) f. y = sin (ex)

Solution i to a. We will use implicit differentiation. (The alternative is to solve for y
first, which isn’t too hard in this case; see solution ii below.) Differentiating both sides of
x = ex+y gives

1 =
dx

dx
=

d

dx
ex+y = ex+y · d

dx
(x + y) = ex+y ·

�
dx

dx
+

dy

dx

�

= ex+y ·
�

1 +
dy

dx

�
= ex+y + ex+y dy

dx
,

from which it follows that

ex+y dy

dx
= 1 − ex+y =⇒ dy

dx
=

1

ex+y
− ex+y

ex+y
= e−(x+y) − 1 . �

Solution ii to a. We will solve for y as a function of x first, and then differentiate.

x = ex+y = exey =⇒ ey =
x

ex
= xe−x

=⇒ y = ln (ey) = ln
�
xe−x

�
= ln (x) + ln

�
e−x

�
= ln (x) − xln (e) = ln (x) − x

It follows that
dy

dx
=

d

dx
(ln(x) − x) =

1

x
− 1 .

(If you plug y = ln(x) − x into
dy

dx
= e−(x+y) − 1 it works out to

1

x
− 1 too.) �

Solution to b. We will use the Chain Rule and the Fundamental Theorem of Calculus.

Let u = −x; then y =

� u

0

tet dt and so

dy

dx
=

dy

du
· du

dx
=

�
d

du

� u

0

tet dt

��
d

dx
(−x)

�
= ueu(−1) = (−x)e−x(−1) = xe−x .

1
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One could also do this by computing the definite integral first using integration by parts,
and then differentiating. �
Solution to c. We will do this one using the Product Rule as the main tool:

dy

dx
=

d

dx
x2ln(x) =

�
d

dx
x2

�
· ln(x) + x2 ·

�
d

dx
ln(x)

�
= 2xln(x) + x2 1

x
= 2xln(x) + x �

Solution to d. We will do this one using the Quotient Rule as the main tool:

dy

dx
=

d

dx

�
x

cos(x)

�
=

dx
dx · cos(x) − x · d

dx cos(x)

cos2(x)

=
1 cos(x) − x (− sin(x))

cos2(x)
=

cos(x) + x sin(x)

cos2(x)

Given the multitude of trig identities, which could be applied before or after differentiating,

there are lots of equivalent ways of writing the answer. For one nice example,
dy

dx
=

sec(x) + x sec(x) tan(x). �
Solution to e. This can be done using the Chain Rule and following up with a trig
identity or two, but it’s easier if one simplifies y using a trig identity or two first:

y = sec2 (arctan(x)) = 1 + tan2 (arctan(x)) = 1 + (tan (arctan(x)))
2

= 1 + x2

It then follows that
dy

dx
=

d

dx

�
1 + x2

�
= 0 + 2x = 2x. �

Solution to f. There is no avoiding the Chain Rule in this one:

dy

dx
=

d

dx
sin (ex) = cos (ex) · d

dx
ex = cos (ex) · ex = ex cos (ex) �

2. Evaluate any three (3) of the integrals a–f. [15 = 3 × 5 each]

a.

�
2x√

4 − x2
dx b.

� π/2

0

sin(z) cos(z) dz c.

�
x2ln(x) dx

d.

� ln(3)

−∞
es ds e.

�
1√

1 + x2
dx f.

� 2

1

1

w2 + w
dw

Solution to a. This can be done using a trig substitution, namely x = 2 sin(θ), but it’s
faster to use the substitution u = 4 − x2, so that du = −2x dx and 2x dx = (−1) du:

�
2x√

4 − x2
dx =

�
1√
u

(−1) du = −
�

u−1/2 du

= −u1/2

1/2
+ C = −2

√
u + C = −2

�
4 − x2 + C �

2
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Solution to b. This is probably easiest using the substitution u = sin(z), so du =

cos(z) dz and
z 0 π/2
u 0 1

.

� π/2

0

sin(z) cos(z) dz =

� 1

0

u du =
u2

2

����
1

0

=
12

2
− 02

2
=

1

2
− 0 =

1

2
�

Solution to c. We will use integration by parts with u = ln(x) and v� = x2, so u� =
1

x

and v =
x3

3
:

�
x2ln(x) dx =

x3

3
ln(x) −

�
1

x
· x3

3
dx

=
x3

3
ln(x) −

�
x2

3
dx =

x3

3
ln(x) − x3

9
+ C �

Solution to d. This is an improper integral, so we need to set up and compute a limit:
� ln(3)

−∞
es ds = lim

t→−∞

� ln(3)

t

es ds = lim
t→−∞

es|ln(3)
t

= lim
t→−∞

�
eln(3) − et

�
= lim

t→−∞

�
3 − et

�
= 3 − 0 = 3 ,

since et → 0 as t → −∞. �
Solution to e. We will use the trig substitution x = tan(θ), so dx = sec2(θ) dθ.

�
1√

1 + x2
dx =

�
1�

1 + tan2(θ)
sec2(θ) dθ =

�
1�

sec2(θ)
sec2(θ) dθ

=

�
1

sec(θ)
sec2(θ) dθ =

�
sec(θ) dθ = ln (tan(θ) + sec(θ)) + C

= ln
�
x +

�
1 + x2

�
+ C

Note that sec(θ) =
�

sec2(θ) =
�

1 + tan2(θ) =
√

1 + x2 if x = tan(θ). �
Solution to f. This integral requires the use of partial fractions. First, if

1

w2 + w
=

1

w(w + 1)
=

A

w
+

B

w + 1
=

A(w + 1) + Bw

w(w + 1)
=

(A + B)w + A

w2 + w
,

then, comparing numerators, we must have A + B = 0 and A = 1, so B = −1. It follows
that

� 2

1

1

w2 + w
dw =

� 2

1

�
1

w
+

−1

w + 1

�
dw =

� 2

1

1

w
dw −

� 2

1

1

w + 1
dw

= ln(w)|21 − ln(w + 1)|21 = [ln(2) − ln(1)] − [ln(2 + 1) − ln(1 + 1)]

= [ln(2) − 0] − [ln(3) − ln(2)] = ln(2) − ln(3) + ln(2)

= 2ln(2) − ln(3)

3

283



Those who feel compelled to simplify further may do so:

2ln(2) − ln(3) = ln
�
22
�
− ln(3) = ln(4) − ln(3) = ln

�
4

3

�
�

3. Do any five (5) of a–i. [25 = 5 × 5 ea.]

a. Determine whether the series

∞�

n=2

(−1)nn2

3n
converges absolutely, converges con-

ditionally, or diverges.

b. Why must the arc-length of y = arctan(x), 0 ≤ x ≤ 13, be less than 13 +
π

2
?

c. Find a power series equal to f(x) =
x

1 + x
(when the series converges) without

using Taylor’s formula.

d. Find the area of the region between the origin and the polar curve r =
π

2
+ θ,

where 0 ≤ θ ≤ π.

e. Find the interval of convergence of the power series

∞�

n=0

n

2n
xn.

f. Use the limit definition of the derivative to compute f �(0) for f(x) = 2x − 1.

g. Compute the area of the surface obtained by rotating the the curve y =
x2

2
,

where 0 ≤ x ≤
√

3, about the y-axis.

h. Use the Right-hand Rule to compute the definite integral

� 3

0

(x + 1) dx.

i. Use the ε− δ definition of limits to verify that lim
x→2

(x + 1) = 3.

Solution to a. We will apply the Ratio Test:

lim
n→∞

����
an+1

an

���� = lim
n→∞

�����
(−1)n+1(n+1)2

3n+1

(−1)nn2

3n

����� = lim
n→∞

����
(−1)n+1(n + 1)2

3n+1
· 3n

(−1)nn2

����

= lim
n→∞

�����
(−1)

�
n2 + 2n + 1

�

3n2

����� = lim
n→∞

n2 + 2n + 1

3n2

= lim
n→∞

�
n2

3n2
+

2n

3n2
+

1

3n2

�
= lim

n→∞

�
1

3
+

2

3n
+

1

3n2

�
=

1

3
+ 0 + 0 =

1

3

Since lim
n→∞

����
an+1

an

���� =
1

3
< 1, the given series converges absolutely by the Ratio Test. �

4
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Solution to b. The easiest way to see – and explain – why the arc-length of y =

arctan(x), 0 ≤ x ≤ 13, must be less than 13 +
π

2
is to draw a picture; even a crude sketch

will suffice:

(Note that since arctan(13) is pretty close to
π

2
, the point

�
13, π

2

�
is pretty close to the

point (13, arctan(13)).) It should be pretty clear from the picture that going from the
origin by way of the y-axis to the point

�
0, π

2

�
and then on to the point

�
13, π

2

�
by way of

the line y =
π

2
is a longer trip than going from the origin to (13, arctan(13)) by way of the

curve y = arctan(x). It follows that
π

2
+13 is greater than the arc-length of y = arctan(x)

for 0 ≤ x ≤ 13. �
Solution to c. Using the formula for the sum of a geometric series in reverse,

f(x) =
x

1 + x
=

x

1 − (−x)
=

∞�

n=0

x(−x)n =
∞�

n=0

x(−1)nxn

=

∞�

n=0

(−1)nxn+1 = x − x2 + x3 − x4 + x5 − · · · �

Solution to d. We plug the polar curve r =
π

2
+ θ, 0 ≤ θ ≤ π, into the area formula in

polar coordinates:

� π

0

1

2
r2 dθ =

� π

0

1

2

�π
2

+ θ
�2

dθ =
1

2

� π

0

��π
2

�2

+ 2
π

2
θ + θ2

�
dθ

=
1

2

�
π2

4
θ +

π

2
θ2 +

1

3
θ3

�����
π

0

=
1

2

�
π2

4
π +

π

2
π2 +

1

3
π3

�
− 1

2

�
π2

4
0 +

π

2
02 +

1

3
03

�
=

13

24
π3 �

Solution to e. We will first find the radius of convergence of the power series
∞�

n=0

n

2n
xn

5
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using the Ratio Test.

lim
n→∞

����
an+1

an

���� = lim
n→∞

����
n+1
2n+1 xn+1

n
2n xn

���� = lim
n→∞

����
n + 1

2n+1
x · 2n

n

���� = lim
n→∞

����
n + 1

n
· x

2

����

= lim
n→∞

�
1 +

1

n

� |x|
2

= (1 + 0)
|x|
2

=
|x|
2

It follows by the Ratio Test that the series converges absolutely when
|x|
2

< 1, i.e. when

−2 < x < 2, and diverges when
|x|
2

> 1, i.e. when x < −2 or x > 2. Thus the radius of

convergence of the given power series is R = 2.
It remains to determine what happens at the endpoints of the interval, namely at

x = −2 and x = 2. Since

lim
n→∞

��� n

2n
(−2)n

��� = lim
n→∞

|(−1)nn| = lim
n→∞

n = ∞ �= 0

and lim
n→∞

��� n

2n
2n
��� = lim

n→∞
n = ∞ �= 0 ,

the Divergence Test tells us that the series diverges for both x = −2 and x = 2. The
interval of convergence is therefore (−2, 2). �

Solution to f. We will plug f(x) = 2x − 1 into the limit definition of the derivative to
compute f �(0):

f �(0) = lim
h→0

f(0 + h) − f(0)

h
= lim

h→0

(2(0 + h) − 1) − (2 · 0 − 1)

h

= lim
h→0

2h − 1 − (−1)

h
= lim

h→0

2h

h
= lim

h→0
2 = 2 �

Solution to g. We will plug the curve y =
x2

2
, 0 ≤ x ≤

√
3, into the formula for the

area of a surface of revolution,

�
2πr ds. First, note that since we are rotating the curve

about the y-axis, r = x − 0 = x. Second, since
dy

dx
=

d

dx

�
x2

2

�
=

1

2
2x = x, we have that

ds =

�
1 +

�
dy
dx

�2

dx =
√

1 + x2 dx. Thus

SA =

�
2πr ds =

� √
3

0

2πx
�

1 + x2 dx Let u = 1 + x2, so du = 2x dx and
x 0

√
3

u 1 4
.

= π

� 4

1

√
u du = π

� 4

1

u1/2 du =
2

3
u3/2

����
4

1

=
2

3

�
43/2 − 13/2

�
=

2

3
(8 − 1) =

14

3
�

6
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Solution to h. We plug the definite integral

� 3

0

(x + 1) dx into the Right-hand Rule

formula

� b

a

f(x) dx = lim
n→∞

n�

i=1

b − a

n
f

�
a +

b − a

n
i

�
and chug away:

� 3

0

(x + 1) dx = lim
n→∞

n�

i=1

3 − 0

n

��
0 +

3 − 0

n
i

�
+ 1

�
= lim

n→∞

n�

i=1

3

n

�
3

n
i + 1

�

= lim
n→∞

3

n

n�

i=1

�
3

n
i + 1

�
= lim

n→∞
3

n

��
n�

i=1

3

n
i

�
+

�
n�

i=1

1

��

= lim
n→∞

3

n

�
3

n

�
n�

i=1

i

�
+ n

�
= lim

n→∞
3

n

�
3

n
· n(n + 1)

2
+ n

�

= lim
n→∞

3

n

�
3

2
(n + 1) + n

�
= lim

n→∞
3

n

�
5

2
n +

3

2

�
= lim

n→∞

�
15

2
+

9

2n

�
=

15

2

since
9

2n
→ 0 as n → ∞. �

Solution to i. We need to show that for any ε > 0, there is a corresponding δ > 0 such
that whenever |x − 2| < δ, we have |(x + 1) − 3| < ε.

Suppose, then, that ε > 0. As usual, we will reverse-engineer the corresponding δ > 0:

|(x + 1) − 3| < ε ⇐⇒ |x − 2| < ε ,

so δ = ε will do the job. (One step of reverse-engineering is as easy as it gets!)
Thus lim

x→2
(x + 1) = 3 by the ε− δ definition of limits. �

Part II. Do any three (3) of 4–8.

4. Find the domain, all maximum, minimum, and inflection points, and all vertical and

horizontal asymptotes of f(x) =
x2

x2 + 1
, and sketch its graph. [15]

Solution. We’ll run through the usual check list of items and then sketch the graph:

i. (Domain) Since x2 + 1 ≥ 1 > 0 for all x, the denominator is never 0. It follows that the

rational function f(x) =
x2

x2 + 1
is defined (and continuous and differentiable, too) for all

x, i.e. its domain is R = (−∞,∞).

ii. (Intercepts) f(0) =
02

02 + 1
= 0, so the y-intercept is the origin, i.e. at y = 0. On the

other hand, f(x) =
x2

x2 + 1
= 0 is only possible if the numerator x2 = 0, i.e. x = 0. It

follows that the origin is also the only x-intercept.

7
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iii. (Vertical asymptotes) Since f(x) is defined and continuous for all x, it cannot have
any vertical asymptotes.

iv. (Horizontal asymptotes) We compute the relevant limits to check for horizontal asymp-
totes:

lim
x→−∞

x2

x2 + 1
= lim

x→−∞
x2

x2 + 1
·

1
x2

1
x2

= lim
x→−∞

1

1 + 1
x2

=
1

1 + 0
= 1

lim
x→+∞

x2

x2 + 1
= lim

x→+∞
x2

x2 + 1
·

1
x2

1
x2

= lim
x→+∞

1

1 + 1
x2

=
1

1 + 0
= 1

(Note that 1
x2 → 0 both as x → −∞ and as x → +∞.) It follows that f(x) has the

horizontal asymptote y = 1 in both directions.

v. (Maxima and minima) First, with a little help from the Quotient Rule,

f �(x) =
d

dx

�
x2

x2 + 1

�
=

�
d
dxx2

�
·
�
x2 + 1

�
− x2 · d

dx

�
x2 + 1

�

(x2 + 1)
2

=
2x ·

�
x2 + 1

�
− x2 · 2x

(x2 + 1)
2 =

2x3 + 2x − 2x3

(x2 + 1)
2 =

2x

(x2 + 1)
2 .

Second, note that f �(x) is also a rational function that is defined and continuous for
all x, using reasoning very similar to that used in i above. This means that the only kind

of critical point that can occur is the sort where f �(x) = 0. f �(0) =
2x

(x2 + 1)
2 = 0 can

only occur when the numerator, 2x, is 0, which happens only when x = 0. Moreover, since

the denominator,
�
x2 + 1

�2 ≥ 1 > 0 for all x (and 2 > 0, too) f �(x) < 0 when x < 0 and
f �(x) > 0 when x > 0. We can summarize this information and its effect on f(x) with the
usual sort of table:

x (−∞, 0) 0 (0, +∞)
f �(x) − 0 +
f(x) ↓ min ↑

Note that x = 0 gives a local (and absolute) minimum point for f(x) and that f(x) has
no maximum point. (This makes particular sense if you do iv above a little more carefully
and notice that f(x) approaches the horizontal asymptote from below in both directions.)

vi. (Graph) We cheat ever so slightly and let Maple do the drawing:
> plot(x^2/(x^2+1),x=-10..10,y=-0.5..1.5);

Whew! �

8
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5. Do both of a and b.

a. Verify that

� �
x2 − 1 dx =

1

2
x
�

x2 − 1 − 1

2
ln
�
x +

�
x2 − 1

�
+ C. [7]

b. Find the arc-length of y =
1

2
x
�

x2 − 1 − 1

2
ln
�
x +

�
x2 − 1

�
for 1 ≤ x ≤ 3. [8]

Solution to a. We can compute the indefinite integral using the trig substitution x =
sec(θ), so dx = sec(θ) tan(θ) dθ, but it’s often easier to differentiate the antiderivative and
check that the result is equal to the integrand. Trying this here

d

dx

�
1

2
x
�

x2 − 1 − 1

2
ln
�
x +

�
x2 − 1

�
+ C

�

=
1

2

d

dx

�
x
�

x2 − 1
�
− 1

2

d

dx
ln
�
x +

�
x2 − 1

�
+

d

dx
C

=
1

2

�
dx

dx
·
�

x2 − 1 + x · d

dx

�
x2 − 1

�
− 1

2

1

x +
√

x2 − 1
· d

dx

�
x +

�
x2 − 1

�
+ 0

=
1

2

�
1 ·
�

x2 − 1 + x · 1

2
√

x2 − 1
· d

dx

�
x2 − 1

��

− 1

2

1

x +
√

x2 − 1
·
�

1 +
1

2
√

x2 − 1
· d

dx

�
x2 − 1

��

=
1

2

��
x2 − 1 +

x

2
√

x2 − 1
· 2x

�
− 1

2

1

x +
√

x2 − 1
·
�

1 +
1

2
√

x2 − 1
· 2x

�

=
1

2

��
x2 − 1 +

x2

√
x2 − 1

�
− 1

2

1

x +
√

x2 − 1
·
�

1 +
x√

x2 − 1

�

=
1

2

��
x2 − 1 ·

√
x2 − 1√
x2 − 1

+
x2

√
x2 − 1

�
− 1

2

1

x +
√

x2 − 1
·
�√

x2 − 1√
x2 − 1

+
x√

x2 − 1

�

=
1

2

�
x2 − 1

�
+ x2

√
x2 − 1

− 1

2

1

x +
√

x2 − 1
·
√

x2 − 1 + x√
x2 − 1

=
1

2

2x2 − 1√
x2 − 1

− 1

2

√
x2 − 1 + x

x +
√

x2 − 1
· 1√

x2 − 1

=
1

2

2x2 − 1√
x2 − 1

− 1

2
1 · 1√

x2 − 1
=

1

2

2x2 − 1 − 1√
x2 − 1

=
1

2

2
�
x2 − 1

�
√

x2 − 1
=

x2 − 1√
x2 − 1

=
�

x2 − 1

. . . makes for an algebra-fest of epic proportions. Maybe it would have been easier to
integrate . . . :-) �
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Solution to b. It follows from a and the Fundamental Theorem of Calculus that
dy

dx
=

�
x2 − 1. Plugging this into the arc-length formula gives:

arc-length =

� 3

1

�
1 +

�
dy

dx

�2

dx =

� 3

1

�
1 +

��
x2 − 1

�2

dx =

� 3

1

�
1 + x2 − 1 dx

=

� 3

1

√
x2 dx =

� 3

1

x dx =
x2

2

����
3

1

=
32

2
− 12

2
=

9 − 1

2
=

8

2
= 4 �

6. Sketch the solid obtained by rotating the square with corners at (1, 0), (1, 1), (2, 0),
and (2, 1) about the y-axis and find its volume and surface area. [15]

Solution. Here is sketch of the solid:

Note that the original region has as its borders (pieces of) the vertical lines x = 1 and
x = 2 and the horizontal lines y = 0 and y = 1, i.e. the region consists of all points (x, y)
with 1 ≤ x ≤ 2 and 0 ≤ y ≤ 1.

We can compute the volume of the solid in several easy ways:

i. (Shells) Note that since we revolved the original region about the y-axis and are using
shells, we will have to integrate with respect to x. The cylindrical shell at x, for some
1 ≤ x ≤ 2, has radius r = x − 0 = x and height h = 1 − 0 = 1. Thus the volume of the
solid is:

V =

� 2

1

2πrh dx =

� 2

1

2πx · 1 dx = 2π
1

2
x2

����
2

1

= πx2
��2
1

= π
�
22 − 12

�
= 3π

ii. (Washers) Note that since we revolved the original region about the y-axis and are
using washers, we will have to integrate with respect to y. The washer at y, for some
0 ≤ y ≤ 1, has outer radius R = 2 − 0 = 2 and inner radius r = 1 − 0 = 1. (Note that the
washers are all identical . . . ) Thus the volume of the solid is:

V =

� 1

0

π
�
R2 − r2

�
dy =

� 1

0

π
�
22 − 12

�
dy =

� 1

0

3π dy = 3πy|10 = 3π(1 − 0) = 3π

10
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iii. (Look, Ma! No calculus!) The solid is a cylinder of radius r = 2 and height h = 1 (and
hence volume πr2h = 4π) with a cylinder of radius r = 1 and height h = 1 (and hence
volume πr2h = π) removed from it. It follows that the solid has volume 4π − π = 3π.

Any correct method, correctly and completely worked out, would do, of course. :-)

It remains to find the surface area of the solid. The complication is that the surface
of the solid consists of four distinct pieces: the upper and lower faces of the solid, which
are both washers with outside radius R = 2 and inside radius r = 1, the outside face,
which is a cylinder of radius R = 2 and height h = 1, and the inside face (i.e. the hole
in the middle), which is a cylinder of radius r = 1 and height h = 1. While the area of
each of these can be computed pretty quickly as the area of a surface of revolution, it is
pointless to work so hard when we should have formulas for the areas of these objects at
our fingertips from our knowledge of the washer and shell methods for computing volume:

The areas of the upper and lower faces are each π
�
R2 − r2

�
= π

�
22 − 12

�
= 3π,

the area of the outside face is πR2h = π221 = 4π, and the area of the inside face is
πr2h = π121 = π. The total surface area of the solid is therefore 2 · 3π + 4π + π = 11π. �

7. Do all three (3) of a–c.

a. Use Taylor’s formula to find the Taylor series at 0 of f(x) = ln(x + 1). [7]

b. Determine the radius and interval of convergence of this Taylor series. [4]

c. Use your answer to part a to find the Taylor series at 0 of
1

x + 1
without using

Taylor’s formula. [4]

Solution to a. We first differentiate and evaluate away to figure out what f (n)(0) must
be for each n. f (0)(x) = f(x) = ln(x + 1), so f (0)(0) = ln(0 + 1) = 0; f (1)(x) = f �(x) =
d
dx ln(x + 1) = 1

x+1 · d
dx (x + 1) = 1

x+11 = 1
x+1 , so f (1)(0) = 1

0+1 = 1; f (2)(x) = f ��(x) =
d
dx

1
x+1 = −1

(x+1)2 · d
dx (x + 1) = −1

(x+1)2 1 = −1
(x+1)2 , so f (2)(0) = −1

(0+1)2 = −1; f (3)(x) =

f ���(x) = d
dx

−1
(x+1)2 = (−1)(−2)

(x+1)3 · d
dx (x+1) = (−1)22

(x+1)3 1 = (−1)22
(x+1)3 , so f (3)(0) = 2

(0+1)3 = (−1)22;

and so on:

n 0 1 2 3 4 5 6 · · ·
f (n)(x) ln(x + 1) 1

x+1
−1

(x+1)2
(−1)22
(x+1)3

(−1)36
(x+1)4

(−1)424
(x+1)5

(−1)5120
(x+1)6 · · ·

f (n)(0) 0 1 −1 (−1)22 (−1)36 (−1)424 (−1)5120 · · ·

A little reflection on this pattern shows us that at stage n > 0, f (n)(x) = (−1)n−1(n−1)!
(x+1)n

and so f (n)(0) = (−1)n−1(n−1)!
(0+1)n = (−1)n−1(n − 1)!.

Applying Taylor’s formula, and noting that n = 0 is the exception to the pattern
noted above, the Taylor series at 0 of f(x) = ln(x + 1) is therefore:

∞�

n=0

f (n)(0)

n!
xn =

f (0)(0)

0!
x0 +

∞�

n=1

f (n)(0)

n!
xn =

0

1
1 +

∞�

n=1

(−1)n−1(n − 1)!

n!
xn

=
∞�

n=1

(−1)n−1

n
xn = x − x2

2
+

x3

3
− x4

4
+

x5

5
− · · · �
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Solution to b. To find the radius of convergence of the power series obtained in a, we
use the Ratio Test:

lim
n→∞

����
an+1

an

���� = lim
n→∞

������

(−1)(n+1)−1

n+1 xn+1

(−1)n−1

n xn

������
= lim

n→∞

����
(−1)n

(−1)n−1
· n

n = 1
· xn+1

xn

����

= lim
n→∞

����(−1)
n

n + 1
x

���� = lim
n→∞

n

n + 1
|x| = |x| lim

n→∞
n

n + 1

= |x| lim
n→∞

n

n + 1
· 1/n

1/n
= |x| lim

n→∞
1

1 + 1
n

= |x| 1

1 + 0
= |x|

It follows that the series converges absolutely when |x| < 1 and diverges when |x| > 1, so
the radius of convergence is R = 1.

To find the interval of convergence, we have to determine whether the series converges
or diverges at each of x = −1 and x = 1. That is, we have to determine whether each of
the series

∞�

n=1

(−1)n−1

n
(−1)n =

∞�

n=1

−1

n
= −1 − 1

2
− 1

3
− 1

4
− · · ·

and
∞�

n=1

(−1)n−1

n
1n =

∞�

n=1

(−1)n−1

n
= 1 − 1

2
+

1

3
− 1

4
+ · · ·

converges or not. The first diverges: −1− 1
2 − 1

3 − 1
4 −· · · = (−1)

�
1 + 1

2 + 1
3 + 1

4 + · · ·
�
, so

it is a non-zero multiple of the harmonic series, which diverges. (We showed this in class
using the Integral Test, though it is even quicker to use the p-Test.) The second converges:
it is just the alternating harmonic series, which converges conditionally. (We showed this
in class using the Alternating Series Test.) It follows that the interval of convergence is
(−1, 1) ∪ {1} = (−1, 1]. �

Solution to c. Since
d

dx
ln(x + 1) =

1

x + 1
(as noted in the solution to a above), we

can get the Taylor series at 0 of f �(x) = 1
x+1 by differentiating the Taylor series at 0 of

f(x) = ln(x + 1) term-by-term:

d

dx

�
x − x2

2
+

x3

3
− x4

4
+

x5

5
− · · ·

�

=
d

dx
x − d

dx

�
x2

2

�
+

d

dx

�
x3

3

�
− d

dx

�
x4

4

�
+

d

dx

�
x5

5

�
− · · ·

= 1 − 2x

2
+

3x2

3
− 4x3

4
+

5x4

5
− · · ·

= 1 − x + x2 − x3 + x4 − · · ·

This is the geometric series with first term a = 1 and common ratio r = −x. �
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8. A spherical balloon is being inflated at a rate of 1 m3/s. How is its surface area
changing at the instant that its volume is 36 m3? [15]

[Recall that a sphere of radius r has volume 4
3πr3 and surface area 4πr2.]

Solution. We need to relate 1 = dV
dt to dA

dt , where A is the surface area of the balloon.
First, observe that

dA

dt
=

d

dt
4πr2 =

d

dr
4πr2 · dr

dt
= 8πr · dr

dt
.

This means that we will need to know
dr

dt
at the instant in question.

Second, we have

1 =
dV

dt
=

d

dt

4

3
πr3 =

d

dr

4

3
πr3 · dr

dt
=

4

3
π3r2 · dr

dt
= 4πr2 · dr

dt
,

so
dr

dt
=

1

4πr2
.

It follows that
dA

dt
= 8πr · 1

4πr2
=

2

r
.

Third, it still remains to determine what the value of r is at the instant in question.

Since V =
4

3
πr3 = 36 at the instant in question, r =

�
36
4
3π

�1/3

=

�
27

π

�1/3

=
3

π1/3
.

Thus, at the instant that the volume is 36 m3, the surface area is changing at a rate

of
dA

dt
=

2
3

π1/3

=
2

3
π1/3 m2/s. �

[Total = 100]

Part MMXI - Bonus problems.

13. Show that ln (sec(x) − tan(x)) = −ln (sec(x) + tan(x)). [2]

Solution. Here goes:

ln (sec(x) − tan(x)) = ln ([sec(x) − tan(x)] · 1) = ln

�
[sec(x) − tan(x)] · sec(x) + tan(x)

sec(x) + tan(x)

�

= ln

�
sec2(x) − tan2(x)

sec(x) + tan(x)

�
= ln

��
1 + tan2(x)

�
− tan2(x)

sec(x) + tan(x)

�

= ln

�
1

sec(x) + tan(x)

�
= ln

�
[sec(x) + tan(x)]

−1
�

= (−1)ln (sec(x) + tan(x)) = −ln (sec(x) + tan(x))

Note that the key trick is the same one we used in class to compute

�
sec(x) dx. �

41. Write an original poem touching on calculus or mathematics in general. [2]

Solution. Write your own! �
I hope that you had some fun with this!

Get some rest now . . .

13

293



Bibliography

[1] M.L. Lial, R.N. Greenwell, and N.P. Ritchey, Calculus with Applications, Brief Version
(9th Edition), Pearson/Addison-Wesley, 2008, ISBN-13: 978-0-321-42274-3.
This was the textbook for the iteration of MATH 105H represented in the present work.

[2] Michael Spivak, Calculus (3rd Edition), Publish or Perish, Inc., Houston, Texas, 1994,
ISBN-10: 0-914098-89-6.
The best mathematics textbook known to the author of the present work, but pitched
at too high a level for all but a few undergraduates.

[3] James Stewart, Calculus: Early Transcendentals (7th Edition), Brooks/Cole, Belmont,
California, 2011, ISBN-10: 0-538-49790-4, ISBN-13: 978-0-538-49790-9.
Various previous editions were the textbooks for the iterations of MATH 110/1100Y
and 1101Y represented in the present work.

294


	I Many Questions
	MATH 110 2001-2002
	Quizzes
	Test #1
	Test #2
	Final Exam

	MATH 110 §A 2002-2003
	Quizzes
	Test #1 (page 1 only)
	Test #2
	Final Exam

	MATH 110 §A 2003-2004
	Quizzes
	Test #1
	Test #2
	Final Exam

	MATH 105H Summer 2008
	Quizzes
	Test
	Final Exam

	MATH 1100Y Summer 2010
	Quizzes
	Test #1
	Test #2
	Final Exam

	MATH 1101Y 2010-2011
	Quizzes
	Test #1
	Test #2
	Final Exam

	MATH 1100Y Summer 2011
	Quizzes
	Test #1
	Test #2
	Final Exam


	II Some Answers
	MATH 110 2001-2002
	Solutions to the Quizzes
	Solutions to Test #1
	Solutions to Test #2

	MATH 110 §A 2002-2003
	Solutions to the Quizzes
	Solutions to Test #1 (page 1 only)
	Solutions to Test #2

	MATH 110 §A 2003-2004
	Solutions to the Quizzes (#1-5 only)
	Solutions to Test #1
	Solutions to Test #2

	MATH 105H Summer 2008
	Solutions to the Quizzes
	Solutions to the Test

	MATH 1100Y Summer 2010
	Solutions to the Quizzes
	Solutions to Test #1
	Solutions to Test #2
	Solutions to the Final Exam

	MATH 1101Y 2010-2011
	Solutions to the Quizzes
	Solutions to Test #1
	Solutions to Test #2
	Solutions to the Final Exam

	MATH 1100Y Summer 2011
	Solutions to the Quizzes
	Solutions to Test #1
	Solutions to Test #2
	Solutions to the Final Exam



