
Integration by Parts

The Product Rule Rearranged and Reversed

The Product Rule of differential calculus tells us how to compute the derivative of a
product of two functions f(x)g(x):

d

dx
(f(x)g(x)) = f ′(x)g(x) + f(x)g′(x)

If we rearrange this equation as f(x)g′(x) = d
dx (f(x)g(x)) − f ′(x)g(x) and integrate on

both sides, we get the formula for integration by parts:∫
f(x)g′(x) dx =

∫
d

dx
(f(x)g(x)) dx−

∫
f ′(x)g(x) dx

= f(x)g(x)−
∫

f ′(x)g(x) dx

If we write u = f(x) and v = g(x), the original Product Rule looks like (uv)′ = u′v + uv′

and the integral formula becomes:

Integration by Parts:
∫

uv′ dx = uv −
∫

u′v dx

This is the form most often seen in single variable calculus textbooks. The definite integral
form of this is:

Integration by Parts:
∫ b

a

uv′ dx = uv|ba −
∫ b

a

u′v dx

The usual motive behind the use of integration by parts , as with substitution, is
to simplify the integrand you have to deal with. That is, one decomposes the original
integrand into a product, one component of which is the u and the other of which is the
v′, and one does so in such a way as to make the remaining integral easier to handle. This
is best seen by working through some examples.

Example 1. Suppose we wish to integrate
∫

xex dx. We need to decide which part of the

integrand will be u and which will be v′. There are two obvious possibilities, make u = ex

and v′ = x, or the the other way around.
If we go with u = ex and v′ = x, we need to compute u′ and v to apply the integration

by parts formula: u′ = d

dx
ex = ex and v =

∫
v′ dx =

∫
x dx = x2

2
. (We don’t worry

about the generic C in computing v; with definite integrals it would cancel out anyway and
with indefinite integrals we won’t be putting in a generic constant until the last integral
sign goes away.) Plugging these into the formula gives us:∫

xex dx = ex · x2

2
−
∫

ex · x2

2
dx
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The integral we still have to deal with is now more complicated than the one we started
with, which is a sign we chose poorly in deciding which part of the original integrand was
to be u and which was to be v′.

Starting over, suppose we decide to have u = x and v′ = ex in trying to apply
integration by parts to

∫
xex dx. Then u′ = d

dx
x = 1 and v =

∫
ex dx = ex. Plugging

these into the integration by parts formula gives:∫
xex dx = xex −

∫
1ex dx = xex −

∫
ex dx = xex − ex + C

Since we are trying to compute an indefinite integral, once the last integral sign has finally
disappeared it’s time to put in the generic constant of integration.

The initial false step in the example above illustrates one of the main pitfalls in trying
to use integration by parts: choosing poorly which part of the integrand is to be u and
which is to be v′ can be counterproductive. While it may not work all the time the following
rule of thumb is very handy a lot of the time in making these selection:

If you have an integrand that is a product of two different types of function, put
whichever appears first on the list below into u when using integration by parts,
with the rest of the integrand going into v′:

logarithmic (including inverse hyperbolic)
inverse trigonometric
polynomials (and a lot of functions not otherwise on this list)
trigonometric
exponential (including hyperbolic)

If we had applied this rule of thumb in the example above to start with, we would have
tried the useful partition of the integrand xex as u = x and v′ = ex first.

A more concise rule of thumb that is widely applicable, but which may require some
compromises or experimentation in practice, is the following:

If at all possible, try to select u and v′ so that u′ is simpler than u and v no worse
than v′.

The example above illustrates this rule of thumb as well: selecting u = x makes u′ = 1
simpler, while v = ex is no worse than v′ = ex; however, selecting u = ex does not make

u′ = ex any simpler, while v = x2

2
is more complex than v = x.

Example 2. Let’s try to compute
∫ e

1 ln(x) dx. Being just ln(x), this integrand has the
problem that it’s not immediately obvious how to decompose it as a product. The only
easy way to do so is the trivial ln(x) = 1 · ln(x); following the first rule of thumb, we decide

to make u = ln(x) and v′ = x. Then u′ = d

dx
ln(x) = 1

x
and v =

∫
1 dx = x. (Note that
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this means that we’ve compromised on the second rule of thumb.) Plugging these into the
inegration by parts formula for definite integrals gives us:∫ e

1
ln(x) dx = ln(x) · x|e1 −

∫ e

1

1
x
· x dx

= xln(x)|e1 −
∫ e

1
1 dx = xln(x)|e1 − x|e1

= (eln(e)− 1ln(1))− (e− 1)
= (e · 1− 1 · 0)− e + 1 = e− 0− e + 1 = 1

A similar trick can be used to compute
∫

arctan(x) dx if you want to try something
along these lines for practice.

Annoyingly, there are situations where we may have to use integration by parts more
than once in the same problem.

Example 3. Let’s try to integrate
∫

x2cos(x) dx. Either rule of thumb would suggest

trying u = x2 and v′ = cos(x), which gives u′ = d

dx
x2 = 2x and v =

∫
cos(x) dx = sin(x).

Plugging these into the inegration by parts formula gives:∫
x2cos(x) dx = x2 sin(x)−

∫
2x sin(x) dx

The remaining integral,
∫

2x sin(x) dx still needs to be sorted out. Following either rule

of thumb suggests trying s = 2x and t′ = sin(x) [we’ve already used u and v in this

example and to do so again in a different way risks confusion], so s′ = d

dx
(2x) = 2 and

t =
∫

sin(x) dx = − cos(x) = (−1) cos(x). Plugging these into the integration by parts
formula gives: ∫

2x sin(x) dx = 2x · (−1) cos(x)−
∫

2(−1) cos(x) dx

= −2x cos(x) +
∫

2 cos(x) dx

= −2x cos(x) + 2 sin(x)

Plugging this back into the original equation lets us finish the original job:∫
x2cos(x) dx = x2 sin(x)−

∫
2x sin(x) dx

= x2 sin(x)− [−2x cos(x) + 2 sin(x)] + C

= x2 sin(x) + 2x cos(x)− 2 sin(x) + C
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Note that because this is and indefinite integral, once the last integral sign is gone it is
time for the generic constant of integration, C, to appear.

Writing the solution with lots of explanations, especially breaking out an easy sub-
sidiary calculation, is a little tedious and inefficient in practice, so most people would
probably write this one up as something like:∫

x2cos(x) dx = x2 sin(x)−
∫

2x sin(x) dx
Using parts u = x2 and v′ = cos(x),
so u′ = 2x and v = sin(x).

= x2 sin(x)−
[
2x · (−1) cos(x)−

∫
2(−1) cos(x) dx

]
Using parts s = 2x and t′ = sin(x), so s′ = 2 and t = − cos(x).

= x2 sin(x)− [2x · (−1) cos(x)− 2(−1) sin(x)] + C

= x2 sin(x)− [−2x cos(x) + 2 sin(x)] + C

= x2 sin(x) + 2x cos(x)− 2 sin(x) + C

An interesting variation on using parts repeatedly in a problem can occur if both parts
are functions that don’t really get simpler whether you integrate or differentiate them.

Example 4. Let’s try to compute
∫

ex sin(x) dx using integration by parts. The second
rule of thumb isn’t much use here because whether you integrate or differentiate either of
ex or sin(x), you get a function of the same type and complexity. However, the first rule
of thumb suggests that we try u = sin(x) and v′ = ex because trig functions come before
exponential functions on the list. Let’s go with this:∫

ex sin(x) dx = ex sin(x)−
∫

ex cos(x) dx
u = sin(x) and v′ = ex,
u′ = cos(x) and v = ex.

= ex sin(x)−
[
ex cos(x)−

∫
ex (− sin(x)) dx

]
s = cos(x) and t′ = ex,
s′ = − sin(x) and t = ex.

= ex sin(x)−
[
ex cos(x) +

∫
ex sin(x) dx

]
= ex sin(x)− ex cos(x)−

∫
ex sin(x) dx

This boils down to
∫

ex sin(x) dx = ex sin(x) − ex cos(x) −
∫

ex sin(x) dx, which we can

solve for
∫

ex sin(x) dx by treating the whole integral as an unknown in an equation:∫
ex sin(x) dx = ex sin(x)− ex cos(x)−

∫
ex sin(x) dx

=⇒ 2
∫

ex sin(x) dx = ex sin(x)− ex cos(x)

=⇒
∫

ex sin(x) dx = 1
2

ex sin(x)− 1
2

ex cos(x) + C

We delayed adding the generic constant of integration until we isolated the integral we
started with.
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