Mathematics 1120H - Calculus II: Integrals and Series
 Trent University, Winter 2024
 Final Examination
 11:00-14:00 on Saturday, 13 April, in the Gym.

Time: 3 hours.
Brought to you by Стефан Біланюк.
Instructions: Do parts A, B, and C, and, if you wish, part D. Show all your work and justify all your answers. If in doubt about something, ask!
Aids: Open book, most any calculator, one head-mounted neural net.
Part A. Do all four (4) of 1-4.

1. Evaluate any four (4) of the integrals a-f. [$20=4 \times 5$ each]
a. $\int_{0}^{\infty} \frac{1}{(x+2)^{3}} d x$
b. $\int 4 x e^{x^{2}+1} d x$
c. $\int_{0}^{\pi / 2} \sin ^{17}(x) \cos (x) d x$
d. $\int \frac{1}{x^{2}-1} d x$
e. $\int_{1}^{e} \ln (x) d x$
f. $\int \frac{1}{4-x^{2}} d x$
2. Determine whether the series converges in any four (4) of a-f. [20 $=4 \times 5 \mathrm{each}]$
a. $\sum_{n=0}^{\infty} \frac{n \sqrt{n}}{n^{3}+1}$
b. $\sum_{n=2}^{\infty} \frac{(-1)^{n}}{\ln \left(n^{2}\right)}$
c. $\sum_{n=0} \frac{n+1}{\pi^{n}}$
d. $\sum_{n=0}^{\infty} \frac{3^{n-1}}{(n+1)!}$
e. $\sum_{n=1}^{\infty} \frac{\cos \left(n^{2}\right)}{n^{2}}$
f. $\sum_{n=0}^{\infty} n^{2} e^{-n}$
3. Do any four (4) of a-f. [$20=4 \times 5$ each]
a. Find the centroid of the region above $y=0$ and below $y=2$ for $0 \leq x \leq 2$.
b. Find the arc-length of the curve $y=x+41$, where $0 \leq x \leq 4$.
c. Find the sum of the series $\sum_{n=1}^{\infty} \frac{1}{n^{2}+n}$.
d. Find the volume of the solid obtained by revolving the region between $y=x-4$ and $y=1$, where $4 \leq x \leq 5$, about the y-axis.
e. Determine whether the series $\sum_{n=0}^{\infty} \frac{(-n)^{n}}{23^{n}}$ converges or diverges.
f. Find the area of the finite region between $y=x$ and $y=x^{4}$.
4. Find the centroid of the "bent finger" region below $y=3$ for $0 \leq x \leq 3$, and above $y=2$ for $0 \leq x \leq 2$ but above $y=0$ for $2 \leq x \leq 3$. [12]

[^0]Part B. Do either one (1) of $\mathbf{5}$ or 6. [14]
5. A solid is obtained by revolving the region below $y=2$, and above $y=$ $1-x$ for $0 \leq x \leq 1$ but above $y=$ $x-1$ for $1 \leq x \leq 3$, about the y-axis. Find the volume of this solid. [14]

6. Find the arc-length of the curve $y=\sqrt{4-x^{2}}$, where $0 \leq x \leq 2$,
a. using the arc-length formula and calculus [10], and
b. without using the arc-length formula or calculus. [4]

Part C. Do either one (1) of $\mathbf{7}$ or 8. [14]
7. Find the Taylor series at 0 of $f(x)=e^{3 x}$
a. using Taylor's formula, [10] and
b. without using Taylor's formula, at least directly. [4]
8. Consider the power series $\sum_{n=0}^{\infty} x^{2 n}=1+x^{2}+x^{4}+x^{6}+\cdots$.
a. Determine the radius and interval of convergence of this power series. [6]
b. What function has this power series as its Taylor series? [4]
c. What power series is equal to the product

$$
\begin{gathered}
\left(\sum_{n=0}^{\infty} x^{n}\right)\left(\sum_{n=0}^{\infty}(-x)^{n}\right)=\left(1+x+x^{2}+x^{3}+\cdots\right)\left(1-x+x^{2}-x^{3}+\cdots\right) ? \text { [4] } \\
{[\text { Total }=100]}
\end{gathered}
$$

Part D. Bonus problems! If you feel like it and have the time, do one or both of these.
$\mathbf{3}^{\mathbf{2}}$. Show that $\ln (\sec (x)-\tan (x))=-\ln (\sec (x)+\tan (x))$. [1]
$\mathbf{2} \times \mathbf{5}$. Write a haiku (or several :-) touching on calculus or mathematics in general. [1]

What is a haiku?

seventeen in three: five and seven and five of syllables in lines

Enjoy your summer!

P.S.: You can keep this question sheet. (Souvenir, paper airplane, fire starter, the possibilities are endless! :-) The solutions to this exam will be posted to the course archive page at http://euclid.trentu.ca/math/sb/1120H/ in late April or early May.

[^0]: Parts B-D are on page 2.

