Mathematics 1120H – Calculus II: Integrals and Series TRENT UNIVERSITY, Winter 2024 Final Examination 11:00-14:00 on Saturday, 13 April, in the Gym.

Time: 3 hours.

Brought to you by Стефан Біланюк.

Instructions: Do parts **A**, **B**, and **C**, and, if you wish, part **D**. Show all your work and justify all your answers. *If in doubt about something*, **ask!**

Aids: Open book, most any calculator, one head-mounted neural net.

Part A. Do all four (4) of 1-4.

1. Evaluate any four (4) of the integrals **a**-**f**. $[20 = 4 \times 5 \text{ each}]$

a.
$$\int_0^\infty \frac{1}{(x+2)^3} dx$$
 b. $\int 4x e^{x^2+1} dx$ **c.** $\int_0^{\pi/2} \sin^{17}(x) \cos(x) dx$
d. $\int \frac{1}{x^2-1} dx$ **e.** $\int_1^e \ln(x) dx$ **f.** $\int \frac{1}{4-x^2} dx$

2. Determine whether the series converges in any four (4) of \mathbf{a} -f. $[20 = 4 \times 5 \text{ each}]$

a.
$$\sum_{n=0}^{\infty} \frac{n\sqrt{n}}{n^3 + 1}$$
 b. $\sum_{n=2}^{\infty} \frac{(-1)^n}{\ln(n^2)}$ **c.** $\sum_{n=0}^{\infty} \frac{n+1}{\pi^n}$
d. $\sum_{n=0}^{\infty} \frac{3^{n-1}}{(n+1)!}$ **e.** $\sum_{n=1}^{\infty} \frac{\cos(n^2)}{n^2}$ **f.** $\sum_{n=0}^{\infty} n^2 e^{-n}$

3. Do any four (4) of **a**-**f**. $[20 = 4 \times 5 \text{ each}]$

- **a.** Find the centroid of the region above y = 0 and below y = 2 for $0 \le x \le 2$.
- **b.** Find the arc-length of the curve y = x + 41, where $0 \le x \le 4$.
- **c.** Find the sum of the series $\sum_{n=1}^{\infty} \frac{1}{n^2 + n}$.
- **d.** Find the volume of the solid obtained by revolving the region between y = x 4 and y = 1, where $4 \le x \le 5$, about the *y*-axis.

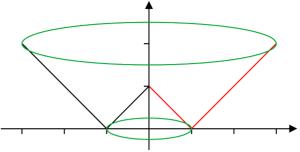
e. Determine whether the series
$$\sum_{n=0}^{\infty} \frac{(-n)^n}{23^n}$$
 converges or diverges.

- **f.** Find the area of the finite region between y = x and $y = x^4$.
- 4. Find the centroid of the "bent finger" region below y = 3 for $0 \le x \le 3$, and above y = 2 for $0 \le x \le 2$ but above y = 0 for $2 \le x \le 3$. [12]

Parts \mathbf{B} - \mathbf{D} are on page 2.

Part \mathbf{A} is on page 2.

- **Part B.** Do either *one* (1) of **5** or **6**. *[14]*
- 5. A solid is obtained by revolving the region below y = 2, and above y = 1 x for $0 \le x \le 1$ but above y = x 1 for $1 \le x \le 3$, about the y-axis. Find the volume of this solid. [14]



- **6.** Find the arc-length of the curve $y = \sqrt{4 x^2}$, where $0 \le x \le 2$,
 - **a.** using the arc-length formula and calculus [10], and
 - **b.** without using the arc-length formula or calculus. [4]
- **Part C.** Do either *one* (1) of **7** or **8**. *[14]*
- 7. Find the Taylor series at 0 of $f(x) = e^{3x}$
 - **a.** using Taylor's formula, (10) and
 - **b.** without using Taylor's formula, at least directly. [4]

8. Consider the power series
$$\sum_{n=0}^{\infty} x^{2n} = 1 + x^2 + x^4 + x^6 + \cdots$$

- **a.** Determine the radius and interval of convergence of this power series. [6]
- **b.** What function has this power series as its Taylor series? [4]
- **c.** What power series is equal to the product

Part D. Bonus problems! If you feel like it and have the time, do one or both of these.

3². Show that $\ln(\sec(x) - \tan(x)) = -\ln(\sec(x) + \tan(x))$. [1]

 2×5 . Write a haiku (or several :-) touching on calculus or mathematics in general. [1]

What is a haiku?

seventeen in three: five and seven and five of syllables in lines

ENJOY YOUR SUMMER!

P.S.: You can keep this question sheet. (Souvenir, paper airplane, fire starter, the possibilities are endless! :-) The solutions to this exam will be posted to the course archive page at http://euclid.trentu.ca/math/sb/1120H/ in late April or early May.