
Mathematics 1120H – Calculus II: Integrals and Series
Trent University, Winter 2024

Solutions to the Final Examination
11:00-14:00 on Saturday, 13 April, in the Gym.

Time: 3 hours. Brought to you by Stefan B�lan�k.

Instructions: Do parts A, B, and C, and, if you wish, part D. Show all your work and
justify all your answers. If in doubt about something, ask!

Aids: Open book aid sheet, most any calculator, one head-mounted neural net.

Part A. Do all four (4) of 1–4.

1. Evaluate any four (4) of the integrals a–f. [20 = 4 × 5 each]

a.

∫ ∞
0

1

(x+ 2)3
dx b.

∫
4xex

2+1 dx c.

∫ π/2

0

sin17(x) cos(x) dx

d.

∫
1

x2 − 1
dx e.

∫ e

1

ln(x) dx f.

∫
1

4− x2
dx

Solutions. a. Since we have ∞ as one of the limits, this is an improper integral and
should be evaluated using a limit. Along the way we will use the substitution w = x+ 2,

so dw = dx, and change the limits accordingly:
x 0 t
w 2 t+ 2

Then

∫ ∞
0

1

(x+ 2)3
dx = lim

t→∞

∫ t

0

1

(x+ 2)3
dx = lim

t→∞

∫ t+2

2

1

w3
dw = lim

t→∞

∫ t+2

2

w−3 dw

= lim
t→∞

w−2

−2

∣∣∣∣t+2

2

= lim
t→∞

−1

2w2

∣∣∣∣t+2

2

= lim
t→∞

(
−1

2(t+ 2)2
− −1

2 · 22

)
= lim
t→∞

(
−1

2(t+ 2)2
+

1

8

)
= 0 +

1

8
=

1

8
= 0.125,

since 2(t+ 2)2 →∞ as t→∞. �

b. We will use the substitution u = x2 + 1, so du = 2x dx and 4x dx = 2 du. Then:∫
4xex

2+1 dx =

∫
eu 2 du = 2eu + C = 2ex

2+1 + C �

c. We will use the substitution z = sin(x), so dz = cos(x) dx, and change the limits as we

go along:
x 0 π/2
z 0 1

∫ π/2

0

sin17(x) cos(x) dx =

∫ 1

0

z17 dz =
z18

18

∣∣∣∣1
0

=
118

18
− 018

18
=

1

18
− 0 =

1

18
�
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d. Observe that
1

x2 − 1
=

1

(x− 1)(x+ 1)
, so we will have to use partial fractions to

decompose the integral:

1

x2 − 1
=

1

(x− 1)(x+ 1)
=

A

x− 1
+

B

x+ 1
=
A(x+ 1) +B(x− 1)

(x− 1)(x+ 1)

=
Ax+A+Bx−B

(x− 1)(x+ 1)
=

(A+B)x+ (A−B)

(x− 1)(x+ 1)

Comparing coefficients of powers of x in the numerators at the beginning and the end, we
see that we must have A+ B = 0 and A− B = 1. Adding these equations together gives
us 2A = 1, so A = 1

2 = 0.5, and plugging this back into either equation lets us solve for
B = − 1

2 = −0.5. Thus

∫
1

x2 − 1
dx =

∫
1

(x− 1)(x+ 1)
dx =

∫ 1
2

x− 1
dx+

∫ − 1
2

X + 1
dx

=
1

2

∫
1

x− 1
dx− 1

2

∫
1

x+ 1
dx

Substitute u = x− 1 and w = x+ 1,
so du = dx and dw = dx.

=
1

2

∫
1

u
du− 1

2

∫
1

w
dw =

1

2
ln(u)− 1

2
ln(w) + C

=
1

2
ln(x− 1)− 1

2
ln(x+ 1) + C. �

e. We will use integration by parts, with u = ln(x) and v′ = 1, so u′ =
1

x
and v = x. Then

∫ e

1

ln(x) dx = x ln(x)|e1 −
∫ e

1

1

x
· x dx = e ln(e)− 1 ln(1)−

∫ e

1

1 dx

= e · 1− 1 · 0− x|e1 = e− 0− (e− 1) = e− e+ 1 = 1 �

f. We will use the trigonometric substitution x = 2 sin(t), so dx = 2 cos(t) dt. Note that

then sin(t) =
x

2
and cos(t) =

√
1− sin2(t) =

√
1− x2

4 .

∫
1

4− x2
dx =

∫
1

4− (2 sin(t))
2 2 cos(t) dt =

∫
2 cos(t)

4− 4 sin2(t)
dt

=

∫
2 cos(t)

4
(
1− sin2(t)

) dt =

∫
2 cos(t)

4 cos2(t)
dt =

∫
1

2 cos(t)
dt

=
1

2

∫
sec(t) dt =

1

2
ln (sec(t) + tan(t)) + C =

1

2
ln

(
1

cos(t)
+

sin(t)

cos(t)

)
+ C

=
1

2
ln

 1√
1− x2

4

+
x
2√

1− x2

4

+ C
. . . which you may simplify

at your leisure. :-) �
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2. Determine whether the series converges in any four (4) of a–f. [20 = 4 × 5 each]

a.

∞∑
n=0

n
√
n

n3 + 1
b.

∞∑
n=2

(−1)n

ln (n2)
c.

∞∑
n=0

n+ 1

πn

d.

∞∑
n=0

3n−1

(n+ 1)!
e.

∞∑
n=1

cos
(
n2
)

n2
f.

∞∑
n=0

n2e−n

Solutions. a.
∞∑
n=0

n
√
n

n3 + 1
=
∞∑
n=0

n3/2

n3 + 1
converges by the Generalized p-Test because it

has p = 3− 3
2 = 3

2 > 1. �

b. We will apply the Alternating Series Test.

i. lim
n→∞

∣∣∣∣ (−1)n

ln (n2)

∣∣∣∣ = lim
n→∞

1

ln (n2)

→ 1
→∞ = 0, so lim

n→∞

(−1)n

ln (n2)
= 0 too.

ii. Since ln
(
n2
)
> 0 for all n ≥ 2,

(−1)n

ln (n2)
alternates sign because (−1)n does.

iii. Since n2 and ln(x) are both increasing functions, ln
(
n2
)
< ln

(
(n+ 1)2

)
for all

n ≥ 2. It follows that

∣∣∣∣ (−1)n

ln (n2)

∣∣∣∣ =
1

ln (n2)
>

1

ln ((n+ 1)2)
=

∣∣∣∣ (−1)n+1

ln ((n+ 1)2)

∣∣∣∣.
Hence, by the Alternating Series Test, the series

∞∑
n=2

(−1)n

ln (n2)
converges. �

c. We will use the Ratio Test.

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣
(n+1)+1
πn+1

n+1
πn

∣∣∣∣∣ = lim
n→∞

∣∣∣∣n+ 2

πn+1
· πn

n+ 1

∣∣∣∣ = lim
n→∞

n+ 2

n+ 1
· 1

π

=
1

π
· lim
n→∞

n+ 2

n+ 1
·

1
n
1
n

=
1

π
· lim
n→∞

1 + 2
n

1 + 1
n

=
1

π
· 1 + 0

1 + 0
=

1

π
· 1 =

1

π
< 1

It follows by the Ratio Test that the series

∞∑
n=0

n+ 1

πn
converges. �

d. We will use the Ratio Test.

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣∣
3(n+1)−1

((n+1)+1)!

3n−1

(n+1)!

∣∣∣∣∣∣ = lim
n→∞

∣∣∣∣ 3n

(n+ 2)!
· (n+ 1)!

3n−1

∣∣∣∣
= lim
n→∞

3

n+ 2

→ 3
→∞ = 0 < 1

It follows by the Ratio Test that the series
∞∑
n=0

3n−1

(n+ 1)!
converges �.
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e. Observe that 0 ≤

∣∣∣∣∣cos
(
n2
)

n2

∣∣∣∣∣ =

∣∣cos
(
n2
)∣∣

n2
≤ 1

n2
since |cos(x)| ≤ 1 for all x. Since

∞∑
n=1

1

n2

converges by the p-Test, it follows that

∞∑
n=1

∣∣∣∣∣cos
(
n2
)

n2

∣∣∣∣∣ converges by the Basic Comparison

Test, from which it follows that

∞∑
n=1

cos
(
n2
)

n2
converges absolutely, and hence converges. �

f. We will use the Ratio Test.

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ (n+ 1)2e−(n+1)

n2e−n

∣∣∣∣ = lim
n→∞

n2 + 2n+ 1

n2
· e
−n−1

e−n

= lim
n→∞

(
1 +

2

n
+

1

n2

)
e−1 =

1

e
(1 + 0 + 0) =

1

e
< 1

Thus
∞∑
n=0

n2e−n converges by the Ratio Test. �

3. Do any four (4) of a–f. [20 = 4 × 5 each]

a. Find the centroid of the region above y = 0 and below y = 2 for 0 ≤ x ≤ 2.

b. Find the arc-length of the curve y = x+ 41, where 0 ≤ x ≤ 4.

c. Find the sum of the series

∞∑
n=1

1

n2 + n
.

d. Find the volume of the solid obtained by revolving the region between y = x− 4
and y = 1, where 4 ≤ x ≤ 5, about the y-axis.

e. Determine whether the series
∞∑
n=0

(−n)n

23n
converges or diverges.

f. Find the area of the finite region between y = x and y = x4.

Solutions. a. The region in question is the square with corners at
(0, 0), (2, 0), (0, 2), and (2, 2). This has four lines of symmetry: x = 1,
y = 1, y = x, and y = 1− x. Since the centroid of a region must be
on any line of symmetry of the region, it follows that the centroid
of this region must be on the point where these four lines intersect,
namely (1, 1). �

b. We plug
dy

dx
=

d

dx
(x+ 41) = 1 into the arc-length formula:

arc-length =

∫ 4

0

√
1 +

(
dy

dx

)2

dx =

∫ 4

0

√
1 + 12 dx =

∫ 4

0

√
2 dx

=
√

2 · x
∣∣∣4
0

=
√

2 · 4−
√

2 · 0 = 4
√

2 �
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c. Note that

∞∑
n=1

1

n2 + n
=

∞∑
n=1

1

n(n+ 1)
. The partial fraction tricks we use to help

integrate rational functions tell us that for some constants A and B we have

1

n(n+ 1)
=
A

n
+

B

n+ 1
=
A(n+ 1) +Bn

n(n+ 1)
=

(A+B)n+A

n(n+ 1)
.

Comparing coefficients of n in the numerators at the beginning and end tells us that
A+B = 0 and A = 1, so B = −1. It follows that

∞∑
n=1

1

n2 + n
=
∞∑
n=1

1

n(n+ 1)
=
∞∑
n=1

[
1

n
− 1

n+ 1

]
=

[
1

1
− 1

2

]
+

[
1

2
− 1

3

]
+

[
1

3
− 1

4

]
+ · · ·

= 1 +

[
−1

2
+

1

2

]
+

[
−1

3
+

1

3

]
+

[
−1

4
+

1

4

]
+ · · · = 1 + 0 + 0 + · · · = 1. �

d. Here is a sketch of the solid:

We give two solutions, using the disk/washer method and the cylindrical shell method,
respectively.

i. Disk/washer method. The disks are perpendicular to the axis of rotation, i.e. the y-axis,
so we use y as our variable. Note that 0 ≤ y ≤ 1 over the given region. The disk at y has
inner radius r = 4 − 0 = 4 and outer radius R = x = y + 4, since y = x − 4 on the right
border of the region. It follows that:

V =

∫ 1

0

π
(
R2 − r2

)
dy =

∫ 1

0

π
(
(y + 4)2 − 42

)
dy =

∫ 1

0

π
(
y2 + 8y + 16− 16

)
dy

=

∫ 1

0

π
(
y2 + 8y

)
dy = π

(
y3

3
+

8y2

2

)∣∣∣∣1
0

= π

(
13

3
+

8 · 12

2

)
− π

(
03

3
+

8 · 02

2

)
= π

(
1

3
+ 4

)
− π · 0 = π

(
1

3
+

12

3

)
− 0 =

13π

3
≈ 13.6136

ii. Cylindrical shell method. The shells are parallel to the y-axis, so they are perpendicular
to the x-axis, so we use x as our variable. Note that 4 ≤ x ≤ 5 over the given region. The
cylindrical shell at x has radius r = x− 0 = x and height R = 1− y = 1− (x− 4) = 5− x,
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since y = x− 4 is the right border of the region. It follows that:

V =

∫ 5

4

2πrh dx =

∫ 5

4

2πx(5− x) dx = 2π

∫ 5

4

(
5x− x2

)
dx = 2π

(
5x2

2
− x3

3

)∣∣∣∣5
4

= 2π

(
5 · 52

2
− 53

3

)
− 2π

(
5 · 42

2
− 43

3

)
= 2π

(
125

2
− 125

3

)
− 2π

(
80

2
− 64

3

)
= 2π · 125 ·

(
1

2
− 1

3

)
− 2π

(
40− 21− 1

3

)
=

250π

6
− 2π

56

3
=

125π

3
− 112π

3

=
13π

3
≈ 13.6136 �

e. We will use the Root Test.

lim
n→∞

|an|1/n = lim
n→∞

∣∣∣∣ (−n)n

23n

∣∣∣∣1/n = lim
n→∞

(
nn

23n

)1/n

= lim
n→∞

n

23

→∞
→ 23

=∞ > 1

It follows that

∞∑
n=0

(−n)n

23n
diverges by the Root Test. �

f. Here is how the curves y = x and y = x4 intersect.

It’s pretty obvious from the graph that the two curves intersect only when x = 0
and x = 1, and that in between y = x is above y = x4. One could also work this out
algebraically: x = x4 exactly when x = 0 or x3 = 1, which last happens only when x = 1.
Between x = 0 and x = 1, y = x is above y = x4 because x4 < x when 0 < x < 1; for

example,
(
1
2

)4
= 1

16 <
1
2 . It follows that the area of the region between the curves is:

A =

∫ 1

0

(
x− x4

)
dx =

(
x2

2
− x5

5

)∣∣∣∣1
0

=

(
12

2
− 15

5

)
−
(

02

2
− 05

5

)
=

(
1

2
− 1

5

)
− 0 =

5

10
− 2

10
=

3

10
�
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4. Find the centroid of the “bent finger” region below y = 3 for
0 ≤ x ≤ 3, and above y = 2 for 0 ≤ x ≤ 2 but above y = 0 for
2 ≤ x ≤ 3. [12]

Solution. To help with the shortcuts used in this solution, consider the diagram below.

Observe that the line y = x is a line of symmetry for the “bent finger” region, so the
centroid must be on this line. This means that we only need to compute one of x̄ or ȳ,
since we must have ȳ = x̄. Also, the region can be subdivided into five unit squares, so it
has area M = 5. No need to do calculus to compute this! :-)

To compute x̄ or ȳ, we still need to compute the moment My or Mx, respectively. We
will compute My.

My =

∫ 3

0

x · [length of vertical cross-section at x] dx =

∫ 2

0

x(3− 2) dx−
∫ 3

2

x(3− 0) dx

=

∫ 2

0

x dx+

∫ 3

2

3x dx =
x2

2

∣∣∣∣2
0

+
3x2

2

∣∣∣∣3
2

=

(
22

2
− 02

2

)
+

(
3 · 32

2
− 3 · 22

2

)
=

4

2
− 0 +

27

2
− 12

2
=

19

2
= 9.5

It follows that x̄ =
My

M
=

19/2

5
=

19

10
= 1.9. Since, as was previously noted, x̄ = ȳ

for this region, it follows that the centroid of this “bent finger” region has coordinates

(x̄, ȳ) =

(
19

10
,

19

10

)
= (1.9, 1.9). �
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Part B. Do either one (1) of 5 or 6. [14]

5. A solid is obtained by revolving the
region below y = 2, and above y =
1− x for 0 ≤ x ≤ 1 but above y =
x− 1 for 1 ≤ x ≤ 3, about the y-axis.
Find the volume of this solid. [14]

Solutions. We give three solutions: one using the disk/washer method, one using the
cylindrical shell method, and one using the formula for the volume of a cone.

i. Disk/washer method. Here is a sketch of the solid with a couple of disk/washer cross-
sections drawn in:

The disks/washers are stacked vertically and are perpendicular to the axis of revolu-
tion, the y-axis, so we use y as our variable. Note that the original region has 0 ≤ y ≤ 2.
When 0 ≤ y ≤ 1, the cross-section at y is a washer with outer radius R = x = y+ 1 (since
y = x−1 on the right edge of the region) and inner radius r = x = −y+ 1 (since y = 1−x
on the left edge of the region for 0 ≤ y ≤ 1), and when 1 ≤ y ≤ 2, the cross-section at
y is a disk with radius R = x = y + 1 (since y = x − 1 on the right edge of the region)
and inner radius r = x = 0 (since x = 0, i.e. the y-axis, is the left edge of the region for
1 ≤ y ≤ 2). It follows that volume of the solid is given by:

V =

∫ 2

0

π
(
R2 − r2

)
dy =

∫ 1

)

π
(
(y + 1)2 − (−y + 1)2

)
dy +

∫ 2

1

π
(
(y + 1)2 − 02

)
dy

= π

∫ 1

0

((
y2 + 2y + 1

)
−
(
y2 − 2y + 1

))
dy + π

∫ 2

1

(
y2 + 2y + 1

)
dy

= π

∫ 1

0

4y dy + π

∫ 2

1

(
y2 + 2y + 1

)
dy = π2y2

∣∣1
0

+ π

(
y3

3
+ y2 + y

)∣∣∣∣2
1

= 2π · 12 − 2π · 02 + π

(
23

3
+ 22 + 2

)
− π

(
13

3
+ 12 + 1

)
= 2π +

26

3
π − 7

3
π =

25π

3
�
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ii. Cylindrical shell method. Here is a sketch of the solid with a couple of cylindrical shells
drawn in:

The cylindrical shells are parallel to the axis of revolution, the y-axis, and perpen-
dicular to the x-axis, so we use x as our variable. The cylindrical shell at x has radius
r = x− 0 = x and height h = 2− (1− x) = 1 + x when 0 ≤ x ≤ 1, and has r = x− 0 = x
and height h = 2− (x− 1) = 3− x for 1 ≤ x ≤ 3. It follows that the volume of the solid
is given by:

V =

∫ 3

0

2πrh dx =

∫ 1

0

2πx(1 + x) dx+

∫ 3

1

2πx(3− x) dx

= 2π

∫ 1

0

(
x2 + x

)
dx+ 2π

∫ 3

1

(
−x2 + 3x

)
dx

= 2π

(
x3

3
+
x2

2

)∣∣∣∣1
0

+ 2π

(
−x

3

3
+

3x2

2

)∣∣∣∣3
1

= 2π

(
13

3
+

12

2

)
− 2π

(
03

3
+

02

2

)
+ 2π

(
−33

3
+

3 · 32

2

)
− 2π

(
−13

3
+

3 · 12

2

)
= 2π

5

6
− 2π0 + 2π

7

6
+ 2π

27

6
− 2π

7

6
= 2π

25

6
=

25π

3
�

iii. Cone volume formula. The formula for the volume of a right circular cone with radius

r at the flat end and with height h is V =
πr2h

3
. The solid in question can be thought of

as a cone with radius 3 and height 3 . . .

. . . from which two smaller cones, each of radius and height 1, have been removed. Thus

the volume of the solid is
π323

3
− 2

π121

3
=

27π

3
− 2π

3
=

25π

3
. �
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6. Find the arc-length of the curve y =
√

4− x2, where 0 ≤ x ≤ 2,

a. using the arc-length formula and calculus [10] , and
b. without using the arc-length formula or calculus. [4]

Solutions. a. We plug

dy

dx
=

d

dx

√
4− x2 =

d

dx

(
4− x2

)1/2
=

1

2

(
4− x2

)−1/2 d

dx

(
4− x2

)
=

1

2

(
4− x2

)−1/2
(−2x) = −x

(
4− x2

)−1/2
=

−x√
4− x2

and the fact that 0 ≤ x ≤ 2 into the arc-length formula and integrate away:

arc-length =

∫ 2

0

√
1 +

(
dy

dx

)2

dx =

∫ 2

0

√
1 +

(
−x√

4− x2

)2

dx =

∫ 2

0

√
1 +

x2

4− x2
dx

=

∫ 2

0

√
4− x2
4− x2

+
x2

4− x2
dx =

∫ 2

0

√
4

4− x2
dx =

∫ 2

0

2√
4− x2

dx

Substitute x = 2 sin(θ), so dx = 2 cos(θ) dθ, and change the limits

as we go along:
x 0 2
θ 0 π/2

=

∫ π/2

0

2√
4− 4 sin2(θ)

2 cos(θ) dθ =

∫ π/2

0

4 cos(θ)√
4
(
1− sin2(θ)

) dθ
=

∫ π/2

0

4 cos(θ)

2
√

cos2(θ)
dθ =

∫ π/2

0

2 cos(θ)

cos(θ)
dθ =

∫ π/2

0

2 dθ = 2θ|π/20

= 2 · π
2
− 2 · 0 = π �

b. Observe that y =
√

4− x2 ≥ 0 for 0 ≤ x ≤ 2, and that

y =
√

4− x2 =⇒ y2 = 4− x2 =⇒ x2 + y2 = 4.

This means the curve in question is the part of the circle of radius 2 centred at the origin
for which y ≥ 0 and x ≥ 0, which is one quarter of the whole circle. The whole circle has
circumference 2πr = 2π · 2 = 4π, one quarter of which – the arc-length of the curve in
question – is π. �
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Part C. Do either one (1) of 7 or 8. [14]

7. Find the Taylor series at 0 of f(x) = e3x

a. using Taylor’s formula, [10] and
b. without using Taylor’s formula, at least directly. [4]

Solutions. a. We build the usual table to winkle out what f (n)(0) is in general. Note

that
d

dx
e3x = e3x

d

dx
3x = 3e3x.

n f (n)(x) f (n)(0)
0 e3x 1
1 3e3x 3
2 32e3x 32

3 33e3x 33
...

... . . .

It’s pretty easy to see that f (n)(0) = 3n for n ≥ 0. Plugging this into Taylor’s formula
tells us that the Taylor series of f(x) = e3x at 0 is:

∞∑
n=0

f (n)(0)

n!
xn =

∞∑
n=0

3n

n!
xn = 1 + 3x+

9

2
x2 +

27

6
x3 + · · · �

b. Recall from class or textbook that et =

∞∑
n=0

tn

n!
for all t. Substituting t = 3x into this

equation gives us e3x =

∞∑
n=0

(3x)n

n!
=

∞∑
n=0

3n

n!
xn for all x. Since a power series equal to a

function must be the Taylor series of the function, it follows that the Taylor series at 0 of

e3x is

∞∑
n=0

3n

n!
xn. �
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8. Consider the power series

∞∑
n=0

x2n = 1 + x2 + x4 + x6 + · · · .

a. Determine the radius and interval of convergence of this power series. [6]

b. What function has this power series as its Taylor series? [4]

c. What power series is equal to the product

( ∞∑
n=0

xn

)( ∞∑
n=0

(−x)n

)
=
(
1 + x+ x2 + x3 + · · ·

) (
1− x+ x2 − x3 + · · ·

)
? [4]

Solutions. We give two solutions to each of parts a and c.

a. By force of habit. As usual, we apply the Ratio Test.

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣x2(n+1)

x2n

∣∣∣∣ = lim
n→∞

∣∣∣∣x2n+2

x2n

∣∣∣∣ = lim
n→∞

∣∣x2∣∣ =
∣∣x2∣∣

It follows by the Ratio Test that the series converges (absolutely) when
∣∣x2∣∣ < 1, i.e. when

−1 < x < 1, and diverges when
∣∣x2∣∣ > 1, i.e. when x < 1 or when x > 1. Thus the radius

of convergence of this power series is R = 1.

It remains to determine whether the power series converges when x = ±1. Observe
that for x = ±1, x2n = 1. Hence, when x = ±1, lim

n→∞
x2n = lim

n→∞
1 = 1 6= 0. It follows by

the Divergence Test that the series diverges when x = ±1. Thus the interval of convergence
of this powers series is (−1, 1). �

a. By recognition.

∞∑
n=0

x2n = 1+x2 +x4 +x6 + · · · is a geometric series with common ratio

r = x2. It follows that it converges exactly when |r| =
∣∣x2∣∣ < 1, i.e. when −1 < x < 1,

and diverges otherwise, so it has radius of convergence R = 1 and interval of convergence
(−1, 1). �

b.

∞∑
n=0

x2n = 1 + x2 + x4 + x6 + · · · is a geometric series with first term a = 1 and

common ratio r = x2. Using the summation formula for geometric series, it follows that
∞∑
n=0

x2n =
a

1− r
=

1

1− x2
when the series converges. When a power series is equal to a

function, that power series is the Taylor series of the function, so

∞∑
n=0

x2n is the Taylor

series of the function f(x) =
1

1− x2
. �
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c. Algebra! We multiply the series out:( ∞∑
n=0

xn

)( ∞∑
n=0

(−x)n

)
=
(
1 + x+ x2 + x3 + · · ·

) (
1− x+ x2 − x3 + · · ·

)
= 1 − x + x2 − x3 + x4 − · · ·

+ x − x2 + x3 − x4 + · · ·
+ x2 − x3 + x4 − · · ·

+ x3 − x4 − · · ·
...

...
...

...

= 1 + x2 + x4 + · · · =
∞∑
n=0

x2n. �

c. They’re all geometric series! Observe that

∞∑
n=0

xn and

∞∑
n=0

(−x)n are both geometric

series, with common ratios of x and −x, respectively, and hence are equal to
1

1− x
and

1

1− (x)
=

1

1 + x
, respectively, when they converge. Using our solution to part b, it follows

that ( ∞∑
n=0

xn

)( ∞∑
n=0

(−x)n

)
=

1

1− x
· 1

1 + x
=

1

1− x2
=

∞∑
n=0

x2n. �

[Total = 100]

Part D. Bonus problems! If you feel like it and have the time, do one or both of these.

32. Show that ln (sec(x)− tan(x)) = −ln (sec(x) + tan(x)). [1]

Solution. Dream on! Also, tinker with how sec(x) and tan(x) are related in ways similar

to computing

∫
sec(x) dx. �

2× 5. Write a haiku (or several :-) touching on calculus or mathematics in general. [1]

What is a haiku?

seventeen in three:
five and seven and five of

syllables in lines

Enjoy your summer!

P.S.: You can keep this question sheet. (Souvenir, paper airplane, fire starter, the pos-
sibilities are endless! :-) The solutions to this exam will be posted to the course archive
page at http://euclid.trentu.ca/math/sb/1120H/ in late April or early May.

13


