Mathematics 1120 H - Calculus II: Integrals and Series

Trent University, Winter 2024
Solutions to the Final Examination
11:00-14:00 on Saturday, 13 April, in the Gym.
Time: 3 hours.
Brought to you by Стефан Біланюк.
Instructions: Do parts A, B, and C, and, if you wish, part D. Show all your work and justify all your answers. If in doubt about something, ask!
Aids: Open book aid sheet, most any calculator, one head-mounted neural net.
Part A. Do all four (4) of 1-4.

1. Evaluate any four (4) of the integrals a-f. [$20=4 \times 5 \mathrm{each}]$
a. $\int_{0}^{\infty} \frac{1}{(x+2)^{3}} d x$
b. $\int 4 x e^{x^{2}+1} d x$
c. $\int_{0}^{\pi / 2} \sin ^{17}(x) \cos (x) d x$
d. $\int \frac{1}{x^{2}-1} d x$
e. $\int_{1}^{e} \ln (x) d x$
f. $\int \frac{1}{4-x^{2}} d x$

Solutions. a. Since we have ∞ as one of the limits, this is an improper integral and should be evaluated using a limit. Along the way we will use the substitution $w=x+2$, so $d w=d x$, and change the limits accordingly: $\begin{array}{ccc}x & 0 & t \\ w & 2 & t+2\end{array}$ Then

$$
\begin{aligned}
\int_{0}^{\infty} \frac{1}{(x+2)^{3}} d x & =\lim _{t \rightarrow \infty} \int_{0}^{t} \frac{1}{(x+2)^{3}} d x=\lim _{t \rightarrow \infty} \int_{2}^{t+2} \frac{1}{w^{3}} d w=\lim _{t \rightarrow \infty} \int_{2}^{t+2} w^{-3} d w \\
& =\left.\lim _{t \rightarrow \infty} \frac{w^{-2}}{-2}\right|_{2} ^{t+2}=\left.\lim _{t \rightarrow \infty} \frac{-1}{2 w^{2}}\right|_{2} ^{t+2}=\lim _{t \rightarrow \infty}\left(\frac{-1}{2(t+2)^{2}}-\frac{-1}{2 \cdot 2^{2}}\right) \\
& =\lim _{t \rightarrow \infty}\left(\frac{-1}{2(t+2)^{2}}+\frac{1}{8}\right)=0+\frac{1}{8}=\frac{1}{8}=0.125
\end{aligned}
$$

since $2(t+2)^{2} \rightarrow \infty$ as $t \rightarrow \infty$.
b. We will use the substitution $u=x^{2}+1$, so $d u=2 x d x$ and $4 x d x=2 d u$. Then:

$$
\int 4 x e^{x^{2}+1} d x=\int e^{u} 2 d u=2 e^{u}+C=2 e^{x^{2}+1}+C
$$

c. We will use the substitution $z=\sin (x)$, so $d z=\cos (x) d x$, and change the limits as we go along: $\begin{array}{ccc}x & 0 & \pi / 2 \\ z & 0 & 1\end{array}$

$$
\int_{0}^{\pi / 2} \sin ^{17}(x) \cos (x) d x=\int_{0}^{1} z^{17} d z=\left.\frac{z^{18}}{18}\right|_{0} ^{1}=\frac{1^{18}}{18}-\frac{0^{18}}{18}=\frac{1}{18}-0=\frac{1}{18}
$$

d. Observe that $\frac{1}{x^{2}-1}=\frac{1}{(x-1)(x+1)}$, so we will have to use partial fractions to decompose the integral:

$$
\begin{aligned}
\frac{1}{x^{2}-1} & =\frac{1}{(x-1)(x+1)}=\frac{A}{x-1}+\frac{B}{x+1}=\frac{A(x+1)+B(x-1)}{(x-1)(x+1)} \\
& =\frac{A x+A+B x-B}{(x-1)(x+1)}=\frac{(A+B) x+(A-B)}{(x-1)(x+1)}
\end{aligned}
$$

Comparing coefficients of powers of x in the numerators at the beginning and the end, we see that we must have $A+B=0$ and $A-B=1$. Adding these equations together gives us $2 A=1$, so $A=\frac{1}{2}=0.5$, and plugging this back into either equation lets us solve for $B=-\frac{1}{2}=-0.5$. Thus

$$
\begin{aligned}
\int \frac{1}{x^{2}-1} d x & =\int \frac{1}{(x-1)(x+1)} d x=\int \frac{\frac{1}{2}}{x-1} d x+\int \frac{-\frac{1}{2}}{X+1} d x \\
& =\frac{1}{2} \int \frac{1}{x-1} d x-\frac{1}{2} \int \frac{1}{x+1} d x \quad \text { Substitute } u=x-1 \text { and } w=x+1, \\
& =\frac{1}{2} \int \frac{1}{u} d u-\frac{1}{2} \int \frac{1}{w} d w=\frac{1}{2} \ln (u)-\frac{1}{2} \ln (w)+C \\
& =\frac{1}{2} \ln (x-1)-\frac{1}{2} \ln (x+1)+C . \quad \square
\end{aligned}
$$

e. We will use integration by parts, with $u=\ln (x)$ and $v^{\prime}=1$, so $u^{\prime}=\frac{1}{x}$ and $v=x$. Then

$$
\begin{aligned}
\int_{1}^{e} \ln (x) d x & =\left.x \ln (x)\right|_{1} ^{e}-\int_{1}^{e} \frac{1}{x} \cdot x d x=e \ln (e)-1 \ln (1)-\int_{1}^{e} 1 d x \\
& =e \cdot 1-1 \cdot 0-\left.x\right|_{1} ^{e}=e-0-(e-1)=e-e+1=1
\end{aligned}
$$

f. We will use the trigonometric substitution $x=2 \sin (t)$, so $d x=2 \cos (t) d t$. Note that then $\sin (t)=\frac{x}{2}$ and $\cos (t)=\sqrt{1-\sin ^{2}(t)}=\sqrt{1-\frac{x^{2}}{4}}$.

$$
\begin{aligned}
\int \frac{1}{4-x^{2}} d x & =\int \frac{1}{4-(2 \sin (t))^{2}} 2 \cos (t) d t=\int \frac{2 \cos (t)}{4-4 \sin ^{2}(t)} d t \\
& =\int \frac{2 \cos (t)}{4\left(1-\sin ^{2}(t)\right)} d t=\int \frac{2 \cos (t)}{4 \cos ^{2}(t)} d t=\int \frac{1}{2 \cos (t)} d t \\
& =\frac{1}{2} \int \sec (t) d t=\frac{1}{2} \ln (\sec (t)+\tan (t))+C=\frac{1}{2} \ln \left(\frac{1}{\cos (t)}+\frac{\sin (t)}{\cos (t)}\right)+C \\
& =\frac{1}{2} \ln \left(\frac{1}{\sqrt{1-\frac{x^{2}}{4}}}+\frac{\frac{x}{2}}{\sqrt{1-\frac{x^{2}}{4}}}\right)+C \quad \begin{array}{ll}
\quad \ldots \text { which you may simplify } \\
\text { at your leisure. :-) }
\end{array}
\end{aligned}
$$

2. Determine whether the series converges in any four (4) of a-f. [20 $=4 \times 5 \mathrm{each}]$
a. $\sum_{n=0}^{\infty} \frac{n \sqrt{n}}{n^{3}+1}$
b. $\sum_{n=2}^{\infty} \frac{(-1)^{n}}{\ln \left(n^{2}\right)}$
c. $\sum_{n=0}^{\infty} \frac{n+1}{\pi^{n}}$
d. $\sum_{n=0}^{\infty} \frac{3^{n-1}}{(n+1)!}$
e. $\sum_{n=1}^{\infty} \frac{\cos \left(n^{2}\right)}{n^{2}}$
f. $\sum_{n=0}^{\infty} n^{2} e^{-n}$

Solutions. a. $\sum_{n=0}^{\infty} \frac{n \sqrt{n}}{n^{3}+1}=\sum_{n=0}^{\infty} \frac{n^{3 / 2}}{n^{3}+1}$ converges by the Generalized p-Test because it has $p=3-\frac{3}{2}=\frac{3}{2}>1$.
b. We will apply the Alternating Series Test.
i. $\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n}}{\ln \left(n^{2}\right)}\right|=\lim _{n \rightarrow \infty} \frac{1}{\ln \left(n^{2}\right)} \rightarrow 1=0$, so $\lim _{n \rightarrow \infty} \frac{(-1)^{n}}{\ln \left(n^{2}\right)}=0$ too.
ii. Since $\ln \left(n^{2}\right)>0$ for all $n \geq 2, \frac{(-1)^{n}}{\ln \left(n^{2}\right)}$ alternates sign because $(-1)^{n}$ does.
iii. Since n^{2} and $\ln (x)$ are both increasing functions, $\ln \left(n^{2}\right)<\ln \left((n+1)^{2}\right)$ for all $n \geq 2$. It follows that $\left|\frac{(-1)^{n}}{\ln \left(n^{2}\right)}\right|=\frac{1}{\ln \left(n^{2}\right)}>\frac{1}{\ln \left((n+1)^{2}\right)}=\left|\frac{(-1)^{n+1}}{\ln \left((n+1)^{2}\right)}\right|$.
Hence, by the Alternating Series Test, the series $\sum_{n=2}^{\infty} \frac{(-1)^{n}}{\ln \left(n^{2}\right)}$ converges.
c. We will use the Ratio Test.

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{\frac{(n+1)+1}{\pi^{n+1}}}{\frac{n+1}{\pi^{n}}}\right|=\lim _{n \rightarrow \infty}\left|\frac{n+2}{\pi^{n+1}} \cdot \frac{\pi^{n}}{n+1}\right|=\lim _{n \rightarrow \infty} \frac{n+2}{n+1} \cdot \frac{1}{\pi} \\
& =\frac{1}{\pi} \cdot \lim _{n \rightarrow \infty} \frac{n+2}{n+1} \cdot \frac{\frac{1}{n}}{\frac{1}{n}}=\frac{1}{\pi} \cdot \lim _{n \rightarrow \infty} \frac{1+\frac{2}{n}}{1+\frac{1}{n}}=\frac{1}{\pi} \cdot \frac{1+0}{1+0}=\frac{1}{\pi} \cdot 1=\frac{1}{\pi}<1
\end{aligned}
$$

It follows by the Ratio Test that the series $\sum_{n=0}^{\infty} \frac{n+1}{\pi^{n}}$ converges.
d. We will use the Ratio Test.

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{\frac{3^{(n+1)-1}}{((n+1)+1)!}}{\frac{3^{n-1}}{(n+1)!}}\right|=\lim _{n \rightarrow \infty}\left|\frac{3^{n}}{(n+2)!} \cdot \frac{(n+1)!}{3^{n-1}}\right| \\
& =\lim _{n \rightarrow \infty} \frac{3}{n+2 \rightarrow 3}=0<1
\end{aligned}
$$

It follows by the Ratio Test that the series $\sum_{n=0}^{\infty} \frac{3^{n-1}}{(n+1)!}$ converges
e. Observe that $0 \leq\left|\frac{\cos \left(n^{2}\right)}{n^{2}}\right|=\frac{\left|\cos \left(n^{2}\right)\right|}{n^{2}} \leq \frac{1}{n^{2}}$ since $|\cos (x)| \leq 1$ for all x. Since $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges by the p-Test, it follows that $\sum_{n=1}^{\infty}\left|\frac{\cos \left(n^{2}\right)}{n^{2}}\right|$ converges by the Basic Comparison Test, from which it follows that $\sum_{n=1}^{\infty} \frac{\cos \left(n^{2}\right)}{n^{2}}$ converges absolutely, and hence converges.
f. We will use the Ratio Test.

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{(n+1)^{2} e^{-(n+1)}}{n^{2} e^{-n}}\right|=\lim _{n \rightarrow \infty} \frac{n^{2}+2 n+1}{n^{2}} \cdot \frac{e^{-n-1}}{e^{-n}} \\
& =\lim _{n \rightarrow \infty}\left(1+\frac{2}{n}+\frac{1}{n^{2}}\right) e^{-1}=\frac{1}{e}(1+0+0)=\frac{1}{e}<1
\end{aligned}
$$

Thus $\sum_{n=0}^{\infty} n^{2} e^{-n}$ converges by the Ratio Test.
3. Do any four (4) of a-f. [$20=4 \times 5$ each]
a. Find the centroid of the region above $y=0$ and below $y=2$ for $0 \leq x \leq 2$.
b. Find the arc-length of the curve $y=x+41$, where $0 \leq x \leq 4$.
c. Find the sum of the series $\sum_{n=1}^{\infty} \frac{1}{n^{2}+n}$.
d. Find the volume of the solid obtained by revolving the region between $y=x-4$ and $y=1$, where $4 \leq x \leq 5$, about the y-axis.
e. Determine whether the series $\sum_{n=0}^{\infty} \frac{(-n)^{n}}{23^{n}}$ converges or diverges.
f. Find the area of the finite region between $y=x$ and $y=x^{4}$.

Solutions. a. The region in question is the square with corners at $(0,0),(2,0),(0,2)$, and $(2,2)$. This has four lines of symmetry: $x=1$, $y=1, y=x$, and $y=1-x$. Since the centroid of a region must be on any line of symmetry of the region, it follows that the centroid of this region must be on the point where these four lines intersect, namely $(1,1)$.

b. We plug $\frac{d y}{d x}=\frac{d}{d x}(x+41)=1$ into the arc-length formula:

$$
\begin{aligned}
\text { arc-length } & =\int_{0}^{4} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x=\int_{0}^{4} \sqrt{1+1^{2}} d x=\int_{0}^{4} \sqrt{2} d x \\
& =\left.\sqrt{2} \cdot x\right|_{0} ^{4}=\sqrt{2} \cdot 4-\sqrt{2} \cdot 0=4 \sqrt{2}
\end{aligned}
$$

c. Note that $\sum_{n=1}^{\infty} \frac{1}{n^{2}+n}=\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$. The partial fraction tricks we use to help integrate rational functions tell us that for some constants A and B we have

$$
\frac{1}{n(n+1)}=\frac{A}{n}+\frac{B}{n+1}=\frac{A(n+1)+B n}{n(n+1)}=\frac{(A+B) n+A}{n(n+1)}
$$

Comparing coefficients of n in the numerators at the beginning and end tells us that $A+B=0$ and $A=1$, so $B=-1$. It follows that

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{1}{n^{2}+n} & =\sum_{n=1}^{\infty} \frac{1}{n(n+1)}=\sum_{n=1}^{\infty}\left[\frac{1}{n}-\frac{1}{n+1}\right]=\left[\frac{1}{1}-\frac{1}{2}\right]+\left[\frac{1}{2}-\frac{1}{3}\right]+\left[\frac{1}{3}-\frac{1}{4}\right]+\cdots \\
& =1+\left[-\frac{1}{2}+\frac{1}{2}\right]+\left[-\frac{1}{3}+\frac{1}{3}\right]+\left[-\frac{1}{4}+\frac{1}{4}\right]+\cdots=1+0+0+\cdots=1 .
\end{aligned}
$$

d. Here is a sketch of the solid:

We give two solutions, using the disk/washer method and the cylindrical shell method, respectively.
i. Disk/washer method. The disks are perpendicular to the axis of rotation, i.e. the y-axis, so we use y as our variable. Note that $0 \leq y \leq 1$ over the given region. The disk at y has inner radius $r=4-0=4$ and outer radius $R=x=y+4$, since $y=x-4$ on the right border of the region. It follows that:

$$
\begin{aligned}
V & =\int_{0}^{1} \pi\left(R^{2}-r^{2}\right) d y=\int_{0}^{1} \pi\left((y+4)^{2}-4^{2}\right) d y=\int_{0}^{1} \pi\left(y^{2}+8 y+16-16\right) d y \\
& =\int_{0}^{1} \pi\left(y^{2}+8 y\right) d y=\left.\pi\left(\frac{y^{3}}{3}+\frac{8 y^{2}}{2}\right)\right|_{0} ^{1}=\pi\left(\frac{1^{3}}{3}+\frac{8 \cdot 1^{2}}{2}\right)-\pi\left(\frac{0^{3}}{3}+\frac{8 \cdot 0^{2}}{2}\right) \\
& =\pi\left(\frac{1}{3}+4\right)-\pi \cdot 0=\pi\left(\frac{1}{3}+\frac{12}{3}\right)-0=\frac{13 \pi}{3} \approx 13.6136
\end{aligned}
$$

ii. Cylindrical shell method. The shells are parallel to the y-axis, so they are perpendicular to the x-axis, so we use x as our variable. Note that $4 \leq x \leq 5$ over the given region. The cylindrical shell at x has radius $r=x-0=x$ and height $R=1-y=1-(x-4)=5-x$,
since $y=x-4$ is the right border of the region. It follows that:

$$
\begin{aligned}
V & =\int_{4}^{5} 2 \pi r h d x=\int_{4}^{5} 2 \pi x(5-x) d x=2 \pi \int_{4}^{5}\left(5 x-x^{2}\right) d x=\left.2 \pi\left(\frac{5 x^{2}}{2}-\frac{x^{3}}{3}\right)\right|_{4} ^{5} \\
& =2 \pi\left(\frac{5 \cdot 5^{2}}{2}-\frac{5^{3}}{3}\right)-2 \pi\left(\frac{5 \cdot 4^{2}}{2}-\frac{4^{3}}{3}\right)=2 \pi\left(\frac{125}{2}-\frac{125}{3}\right)-2 \pi\left(\frac{80}{2}-\frac{64}{3}\right) \\
& =2 \pi \cdot 125 \cdot\left(\frac{1}{2}-\frac{1}{3}\right)-2 \pi\left(40-21-\frac{1}{3}\right)=\frac{250 \pi}{6}-2 \pi \frac{56}{3}=\frac{125 \pi}{3}-\frac{112 \pi}{3} \\
& =\frac{13 \pi}{3} \approx 13.6136
\end{aligned}
$$

e. We will use the Root Test.

$$
\lim _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}=\lim _{n \rightarrow \infty}\left|\frac{(-n)^{n}}{23^{n}}\right|^{1 / n}=\lim _{n \rightarrow \infty}\left(\frac{n^{n}}{23^{n}}\right)^{1 / n}=\lim _{n \rightarrow \infty} \frac{n}{23} \rightarrow 23=\infty>1
$$

It follows that $\sum_{n=0}^{\infty} \frac{(-n)^{n}}{23^{n}}$ diverges by the Root Test.
f. Here is how the curves $y=x$ and $y=x^{4}$ intersect.

It's pretty obvious from the graph that the two curves intersect only when $x=0$ and $x=1$, and that in between $y=x$ is above $y=x^{4}$. One could also work this out algebraically: $x=x^{4}$ exactly when $x=0$ or $x^{3}=1$, which last happens only when $x=1$. Between $x=0$ and $x=1, y=x$ is above $y=x^{4}$ because $x^{4}<x$ when $0<x<1$; for example, $\left(\frac{1}{2}\right)^{4}=\frac{1}{16}<\frac{1}{2}$. It follows that the area of the region between the curves is:

$$
\begin{aligned}
A & =\int_{0}^{1}\left(x-x^{4}\right) d x=\left.\left(\frac{x^{2}}{2}-\frac{x^{5}}{5}\right)\right|_{0} ^{1}=\left(\frac{1^{2}}{2}-\frac{1^{5}}{5}\right)-\left(\frac{0^{2}}{2}-\frac{0^{5}}{5}\right) \\
& =\left(\frac{1}{2}-\frac{1}{5}\right)-0=\frac{5}{10}-\frac{2}{10}=\frac{3}{10}
\end{aligned}
$$

4. Find the centroid of the "bent finger" region below $y=3$ for $0 \leq x \leq 3$, and above $y=2$ for $0 \leq x \leq 2$ but above $y=0$ for $2 \leq x \leq 3$. [12]

Solution. To help with the shortcuts used in this solution, consider the diagram below.

Observe that the line $y=x$ is a line of symmetry for the "bent finger" region, so the centroid must be on this line. This means that we only need to compute one of \bar{x} or \bar{y}, since we must have $\bar{y}=\bar{x}$. Also, the region can be subdivided into five unit squares, so it has area $M=5$. No need to do calculus to compute this! :-)

To compute \bar{x} or \bar{y}, we still need to compute the moment M_{y} or M_{x}, respectively. We will compute M_{y}.

$$
\begin{aligned}
M_{y} & =\int_{0}^{3} x \cdot[\text { length of vertical cross-section at } x] d x=\int_{0}^{2} x(3-2) d x-\int_{2}^{3} x(3-0) d x \\
& =\int_{0}^{2} x d x+\int_{2}^{3} 3 x d x=\left.\frac{x^{2}}{2}\right|_{0} ^{2}+\left.\frac{3 x^{2}}{2}\right|_{2} ^{3}=\left(\frac{2^{2}}{2}-\frac{0^{2}}{2}\right)+\left(\frac{3 \cdot 3^{2}}{2}-\frac{3 \cdot 2^{2}}{2}\right) \\
& =\frac{4}{2}-0+\frac{27}{2}-\frac{12}{2}=\frac{19}{2}=9.5
\end{aligned}
$$

It follows that $\bar{x}=\frac{M_{y}}{M}=\frac{19 / 2}{5}=\frac{19}{10}=1.9$. Since, as was previously noted, $\bar{x}=\bar{y}$ for this region, it follows that the centroid of this "bent finger" region has coordinates $(\bar{x}, \bar{y})=\left(\frac{19}{10}, \frac{19}{10}\right)=(1.9,1.9)$.

Part B. Do either one (1) of $\mathbf{5}$ or 6. [14]
5. A solid is obtained by revolving the region below $y=2$, and above $y=$ $1-x$ for $0 \leq x \leq 1$ but above $y=$ $x-1$ for $1 \leq x \leq 3$, about the y-axis. Find the volume of this solid. [14]

Solutions. We give three solutions: one using the disk/washer method, one using the cylindrical shell method, and one using the formula for the volume of a cone.
i. Disk/washer method. Here is a sketch of the solid with a couple of disk/washer crosssections drawn in:

The disks/washers are stacked vertically and are perpendicular to the axis of revolution, the y-axis, so we use y as our variable. Note that the original region has $0 \leq y \leq 2$. When $0 \leq y \leq 1$, the cross-section at y is a washer with outer radius $R=x=y+1$ (since $y=x-1$ on the right edge of the region) and inner radius $r=x=-y+1$ (since $y=1-x$ on the left edge of the region for $0 \leq y \leq 1$), and when $1 \leq y \leq 2$, the cross-section at y is a disk with radius $R=x=y+1$ (since $y=x-1$ on the right edge of the region) and inner radius $r=x=0$ (since $x=0$, i.e. the y-axis, is the left edge of the region for $1 \leq y \leq 2$). It follows that volume of the solid is given by:

$$
\begin{aligned}
V & =\int_{0}^{2} \pi\left(R^{2}-r^{2}\right) d y=\int_{)}^{1} \pi\left((y+1)^{2}-(-y+1)^{2}\right) d y+\int_{1}^{2} \pi\left((y+1)^{2}-0^{2}\right) d y \\
& =\pi \int_{0}^{1}\left(\left(y^{2}+2 y+1\right)-\left(y^{2}-2 y+1\right)\right) d y+\pi \int_{1}^{2}\left(y^{2}+2 y+1\right) d y \\
& =\pi \int_{0}^{1} 4 y d y+\pi \int_{1}^{2}\left(y^{2}+2 y+1\right) d y=\left.\pi 2 y^{2}\right|_{0} ^{1}+\left.\pi\left(\frac{y^{3}}{3}+y^{2}+y\right)\right|_{1} ^{2} \\
& =2 \pi \cdot 1^{2}-2 \pi \cdot 0^{2}+\pi\left(\frac{2^{3}}{3}+2^{2}+2\right)-\pi\left(\frac{1^{3}}{3}+1^{2}+1\right)=2 \pi+\frac{26}{3} \pi-\frac{7}{3} \pi=\frac{25 \pi}{3}
\end{aligned}
$$

ii. Cylindrical shell method. Here is a sketch of the solid with a couple of cylindrical shells drawn in:

The cylindrical shells are parallel to the axis of revolution, the y-axis, and perpendicular to the x-axis, so we use x as our variable. The cylindrical shell at x has radius $r=x-0=x$ and height $h=2-(1-x)=1+x$ when $0 \leq x \leq 1$, and has $r=x-0=x$ and height $h=2-(x-1)=3-x$ for $1 \leq x \leq 3$. It follows that the volume of the solid is given by:

$$
\begin{aligned}
V & =\int_{0}^{3} 2 \pi r h d x=\int_{0}^{1} 2 \pi x(1+x) d x+\int_{1}^{3} 2 \pi x(3-x) d x \\
& =2 \pi \int_{0}^{1}\left(x^{2}+x\right) d x+2 \pi \int_{1}^{3}\left(-x^{2}+3 x\right) d x \\
& =\left.2 \pi\left(\frac{x^{3}}{3}+\frac{x^{2}}{2}\right)\right|_{0} ^{1}+\left.2 \pi\left(-\frac{x^{3}}{3}+\frac{3 x^{2}}{2}\right)\right|_{1} ^{3} \\
& =2 \pi\left(\frac{1^{3}}{3}+\frac{1^{2}}{2}\right)-2 \pi\left(\frac{0^{3}}{3}+\frac{0^{2}}{2}\right)+2 \pi\left(-\frac{3^{3}}{3}+\frac{3 \cdot 3^{2}}{2}\right)-2 \pi\left(-\frac{1^{3}}{3}+\frac{3 \cdot 1^{2}}{2}\right) \\
& =2 \pi \frac{5}{6}-2 \pi 0+2 \pi \frac{7}{6}+2 \pi \frac{27}{6}-2 \pi \frac{7}{6}=2 \pi \frac{25}{6}=\frac{25 \pi}{3}
\end{aligned}
$$

iii. Cone volume formula. The formula for the volume of a right circular cone with radius r at the flat end and with height h is $V=\frac{\pi r^{2} h}{3}$. The solid in question can be thought of as a cone with radius 3 and height $3 \ldots$

... from which two smaller cones, each of radius and height 1 , have been removed. Thus the volume of the solid is $\frac{\pi 3^{2} 3}{3}-2 \frac{\pi 1^{2} 1}{3}=\frac{27 \pi}{3}-\frac{2 \pi}{3}=\frac{25 \pi}{3}$.
6. Find the arc-length of the curve $y=\sqrt{4-x^{2}}$, where $0 \leq x \leq 2$,
a. using the arc-length formula and calculus [10], and
b. without using the arc-length formula or calculus. [4]

Solutions. a. We plug

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x} \sqrt{4-x^{2}}=\frac{d}{d x}\left(4-x^{2}\right)^{1 / 2}=\frac{1}{2}\left(4-x^{2}\right)^{-1 / 2} \frac{d}{d x}\left(4-x^{2}\right) \\
& =\frac{1}{2}\left(4-x^{2}\right)^{-1 / 2}(-2 x)=-x\left(4-x^{2}\right)^{-1 / 2}=\frac{-x}{\sqrt{4-x^{2}}}
\end{aligned}
$$

and the fact that $0 \leq x \leq 2$ into the arc-length formula and integrate away:

$$
\begin{aligned}
\text { arc-length } & =\int_{0}^{2} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x=\int_{0}^{2} \sqrt{1+\left(\frac{-x}{\sqrt{4-x^{2}}}\right)^{2}} d x=\int_{0}^{2} \sqrt{1+\frac{x^{2}}{4-x^{2}}} d x \\
& =\int_{0}^{2} \sqrt{\frac{4-x^{2}}{4-x^{2}}+\frac{x^{2}}{4-x^{2}}} d x=\int_{0}^{2} \sqrt{\frac{4}{4-x^{2}}} d x=\int_{0}^{2} \frac{2}{\sqrt{4-x^{2}}} d x
\end{aligned}
$$

Substitute $x=2 \sin (\theta)$, so $d x=2 \cos (\theta) d \theta$, and change the limits

$$
\begin{aligned}
& \text { as we go along: } \begin{array}{lll}
x & 0 & 2 \\
\theta & 0 & \pi / 2
\end{array} \\
= & \int_{0}^{\pi / 2} \frac{2}{\sqrt{4-4 \sin ^{2}(\theta)}} 2 \cos (\theta) d \theta=\int_{0}^{\pi / 2} \frac{4 \cos (\theta)}{\sqrt{4\left(1-\sin ^{2}(\theta)\right)}} d \theta \\
= & \int_{0}^{\pi / 2} \frac{4 \cos (\theta)}{2 \sqrt{\cos ^{2}(\theta)}} d \theta=\int_{0}^{\pi / 2} \frac{2 \cos (\theta)}{\cos (\theta)} d \theta=\int_{0}^{\pi / 2} 2 d \theta=\left.2 \theta\right|_{0} ^{\pi / 2} \\
= & 2 \cdot \frac{\pi}{2}-2 \cdot 0=\pi \quad \square
\end{aligned}
$$

b. Observe that $y=\sqrt{4-x^{2}} \geq 0$ for $0 \leq x \leq 2$, and that

$$
y=\sqrt{4-x^{2}} \Longrightarrow y^{2}=4-x^{2} \Longrightarrow x^{2}+y^{2}=4
$$

This means the curve in question is the part of the circle of radius 2 centred at the origin for which $y \geq 0$ and $x \geq 0$, which is one quarter of the whole circle. The whole circle has circumference $2 \pi r=2 \pi \cdot 2=4 \pi$, one quarter of which - the arc-length of the curve in question - is π.

Part C. Do either one (1) of $\mathbf{7}$ or 8. [14]
7. Find the Taylor series at 0 of $f(x)=e^{3 x}$
a. using Taylor's formula, [10] and
b. without using Taylor's formula, at least directly. [4]

Solutions. a. We build the usual table to winkle out what $f^{(n)}(0)$ is in general. Note that $\frac{d}{d x} e^{3 x}=e^{3 x} \frac{d}{d x} 3 x=3 e^{3 x}$.

n	$f^{(n)}(x)$	$f^{(n)}(0)$
0	$e^{3 x}$	1
1	$3 e^{3 x}$	3
2	$3^{2} e^{3 x}$	3^{2}
3	$3^{3} e^{3 x}$	3^{3}
\vdots	\vdots	\ldots

It's pretty easy to see that $f^{(n)}(0)=3^{n}$ for $n \geq 0$. Plugging this into Taylor's formula tells us that the Taylor series of $f(x)=e^{3 x}$ at 0 is:

$$
\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}=\sum_{n=0}^{\infty} \frac{3^{n}}{n!} x^{n}=1+3 x+\frac{9}{2} x^{2}+\frac{27}{6} x^{3}+\cdots
$$

b. Recall from class or textbook that $e^{t}=\sum_{n=0}^{\infty} \frac{t^{n}}{n!}$ for all t. Substituting $t=3 x$ into this equation gives us $e^{3 x}=\sum_{n=0}^{\infty} \frac{(3 x)^{n}}{n!}=\sum_{n=0}^{\infty} \frac{3^{n}}{n!} x^{n}$ for all x. Since a power series equal to a function must be the Taylor series of the function, it follows that the Taylor series at 0 of $e^{3 x}$ is $\sum_{n=0}^{\infty} \frac{3^{n}}{n!} x^{n}$.
8. Consider the power series $\sum_{n=0}^{\infty} x^{2 n}=1+x^{2}+x^{4}+x^{6}+\cdots$.
a. Determine the radius and interval of convergence of this power series. [6]
b. What function has this power series as its Taylor series? [4]
c. What power series is equal to the product

$$
\left(\sum_{n=0}^{\infty} x^{n}\right)\left(\sum_{n=0}^{\infty}(-x)^{n}\right)=\left(1+x+x^{2}+x^{3}+\cdots\right)\left(1-x+x^{2}-x^{3}+\cdots\right) ? \text { [4] }
$$

Solutions. We give two solutions to each of parts a and \mathbf{c}.
a. By force of habit. As usual, we apply the Ratio Test.

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{x^{2(n+1)}}{x^{2 n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{x^{2 n+2}}{x^{2 n}}\right|=\lim _{n \rightarrow \infty}\left|x^{2}\right|=\left|x^{2}\right|
$$

It follows by the Ratio Test that the series converges (absolutely) when $\left|x^{2}\right|<1$, i.e. when $-1<x<1$, and diverges when $\left|x^{2}\right|>1$, i.e. when $x<1$ or when $x>1$. Thus the radius of convergence of this power series is $R=1$.

It remains to determine whether the power series converges when $x= \pm 1$. Observe that for $x= \pm 1, x^{2 n}=1$. Hence, when $x= \pm 1, \lim _{n \rightarrow \infty} x^{2 n}=\lim _{n \rightarrow \infty} 1=1 \neq 0$. It follows by the Divergence Test that the series diverges when $x= \pm 1$. Thus the interval of convergence of this powers series is $(-1,1)$.
a. By recognition. $\sum_{n=0}^{\infty} x^{2 n}=1+x^{2}+x^{4}+x^{6}+\cdots$ is a geometric series with common ratio $r=x^{2}$. It follows that it converges exactly when $|r|=\left|x^{2}\right|<1$, i.e. when $-1<x<1$, and diverges otherwise, so it has radius of convergence $R=1$ and interval of convergence $(-1,1)$.
b. $\sum_{n=0}^{\infty} x^{2 n}=1+x^{2}+x^{4}+x^{6}+\cdots$ is a geometric series with first term $a=1$ and common ratio $r=x^{2}$. Using the summation formula for geometric series, it follows that $\sum_{n=0}^{\infty} x^{2 n}=\frac{a}{1-r}=\frac{1}{1-x^{2}}$ when the series converges. When a power series is equal to a function, that power series is the Taylor series of the function, so $\sum_{n=0}^{\infty} x^{2 n}$ is the Taylor series of the function $f(x)=\frac{1}{1-x^{2}}$.
c. Algebra! We multiply the series out:

$$
\begin{aligned}
& \left(\sum_{n=0}^{\infty} x^{n}\right)\left(\sum_{n=0}^{\infty}(-x)^{n}\right)=\left(1+x+x^{2}+x^{3}+\cdots\right)\left(1-x+x^{2}-x^{3}+\cdots\right) \\
& =1-x+x^{2}-x^{3}+x^{4}-\cdots \\
& +x-x^{2}+x^{3}-x^{4}+\cdots \\
& +x^{2}-x^{3}+x^{4}-\cdots \\
& +x^{3}-x^{4}-\ldots \\
& =1+x^{2}+x^{4}+\cdots=\sum_{n=0}^{\infty} x^{2 n} .
\end{aligned}
$$

c. They're all geometric series! Observe that $\sum_{n=0}^{\infty} x^{n}$ and $\sum_{n=0}^{\infty}(-x)^{n}$ are both geometric series, with common ratios of x and $-x$, respectively, and hence are equal to $\frac{1}{1-x}$ and $\frac{1}{1-(x)}=\frac{1}{1+x}$, respectively, when they converge. Using our solution to part \mathbf{b}, it follows that

$$
\left(\sum_{n=0}^{\infty} x^{n}\right)\left(\sum_{n=0}^{\infty}(-x)^{n}\right)=\frac{1}{1-x} \cdot \frac{1}{1+x}=\frac{1}{1-x^{2}}=\sum_{n=0}^{\infty} x^{2 n}
$$

$$
[\text { Total }=100]
$$

Part D. Bonus problems! If you feel like it and have the time, do one or both of these.
$\mathbf{3}^{\mathbf{2}}$. Show that $\ln (\sec (x)-\tan (x))=-\ln (\sec (x)+\tan (x))$. [1]
Solution. Dream on! Also, tinker with how $\sec (x)$ and $\tan (x)$ are related in ways similar to computing $\int \sec (x) d x$.
$\mathbf{2} \times \mathbf{5}$. Write a haiku (or several :-) touching on calculus or mathematics in general. [1]

What is a haiku?

seventeen in three: five and seven and five of syllables in lines

Enjoy your summer!

P.S.: You can keep this question sheet. (Souvenir, paper airplane, fire starter, the possibilities are endless! :-) The solutions to this exam will be posted to the course archive page at http://euclid.trentu.ca/math/sb/1120H/ in late April or early May.

