TRENT UNIVERSITY, WINTER 2024

MATH 1120H Midterm Test Assignment $\#\pi + e$

Tuesday, 27 February 11:00-11:50

Name: _____

STUDENT NUMBER:

 Question
 Mark

 1

 2

 3

 Total

Instructions

- Show all your work. Legibly, please! Simplify where you reasonably can.
- If you have a question, ask it!
- Use the back sides of all the pages for rough work or extra space.
- You may use a calculator and (all sides of) an A4- or letter-size aid sheet.

Note. Technically, this is an extra assignment which, should you choose to do it, will go into the pool from which the best ten are chosen to count towards the final mark.

1. Compute any four (4) of integrals **a**–**f**. $[12 = 4 \times 3 \text{ each}]$

a.
$$\int_{0}^{\pi/4} \sin(x) \sec^{3}(x) dx$$

b. $\int_{0}^{1} \ln(y) dy$
c. $\int \frac{1}{z^{3} + z} dz$
d. $\int (r^{2} + 1)^{-1/2} dr$
e. $\int \frac{e^{s}}{e^{2s} + 1} ds$
f. $\int_{1}^{\infty} \frac{1}{t^{3}} dt$

- **2.** Do any two (2) of parts **a**–**c**. $[8 = 2 \times 4 \text{ each}]$
 - **a.** Explain why the infinite sum $\sum_{n=1}^{\infty} \frac{1}{n^3}$ ought to add up to a finite value.
 - **b.** Find the area between the curves $y = \sqrt{x}$ and $y = x^3$ for $0 \le x \le 1$.
 - **c.** Find the centroid of the of the diamond-shaped region whose corners are (0, 1), (-1, 0), (0, -1), and (1, 0). (You may assume a constant density of 1.)

3. Do *one* (1) of parts **a** or **b**. *[10]*

a. Find the arc-length of the curve $y = \ln(\cos(x))$, where $0 \le x \le \frac{\pi}{4}$.

b. Compute $\int x^2 \arctan(x) dx$.

 $\boldsymbol{3}$

[Total = 30]