Trent University, Winter 2024
MATH 1120H
Midterm Test
Assignment $\# \pi+e$
Tuesday, 27 February
11:00-11:50

Name:

Student Number:

Instructions

- Show all your work. Legibly, please! Simplify where you reasonably can.
- If you have a question, ask it!
- Use the back sides of all the pages for rough work or extra space.
- You may use a calculator and (all sides of) an A4- or letter-size aid sheet.

Note. Technically, this is an extra assignment which, should you choose to do it, will go into the pool from which the best ten are chosen to count towards the final mark.

1. Compute any four (4) of integrals a-f. $[12=4 \times 3$ each $]$
a. $\int_{0}^{\pi / 4} \sin (x) \sec ^{3}(x) d x$
b. $\int_{0}^{1} \ln (y) d y$
c. $\int \frac{1}{z^{3}+z} d z$
d. $\int\left(r^{2}+1\right)^{-1 / 2} d r$
e. $\int \frac{e^{s}}{e^{2 s}+1} d s$
f. $\int_{1}^{\infty} \frac{1}{t^{3}} d t$
2. Do any two (2) of parts a-c. [$8=2 \times 4$ each]
a. Explain why the infinite sum $\sum_{n=1}^{\infty} \frac{1}{n^{3}}$ ought to add up to a finite value.
b. Find the area between the curves $y=\sqrt{x}$ and $y=x^{3}$ for $0 \leq x \leq 1$.
c. Find the centroid of the of the diamond-shaped region whose corners are $(0,1)$, $(-1,0),(0,-1)$, and $(1,0)$. (You may assume a constant density of 1.)
3. Do one (1) of parts a or b. [10]
a. Find the arc-length of the curve $y=\ln (\cos (x))$, where $0 \leq x \leq \frac{\pi}{4}$.
b. Compute $\int x^{2} \arctan (x) d x$.
