Mathematics 1120H - Calculus II: Integrals and Series

Trent University, Winter 2024

Assignment \#8

Calculating π
Due* just before midnight on Friday, 8 March.

1. Verify that the series $\sum_{n=0}^{\infty} \frac{2}{(4 n+1)(4 n+3)}$ converges using one or more of the convergence tests given in class. [2]
2. Use SageMath to to find the sum of the series in 1. [1]
3. What series involving powers of x has $\frac{1}{1+x^{2}}$ as its sum? For which values of x does this series converge? [3]
4. Since $\frac{d}{d x} \arctan (x)=\frac{1}{1+x^{2}}$ what series involving powers of x should be equal to $\arctan (x)$ when it converges? For which values of x does this series converge? [3]
Hint: This series converges for almost, but not quite, the same values of x that the series in $\mathbf{3}$ does.
5. Given that $\arctan (1)=\frac{\pi}{4}$, what is the connection betwen the series in $\mathbf{1}$ and $\mathbf{4}$?

For One Who Loves An Engineer

Sing not to me of silicon chips
The chocolate kind are sweeter
But sweeter still would be your lips -
Put down that voltage meter!
A jug of wine (viscosity 3),
Loaf of bread (shear modulus 7)
But me you cannot quantify -
Oh, glory be to heaven!

Miriam Nadel

Mathematicians are like lovers. .. Grant a mathematician the least principle, and they will draw from it a consequence which you must also grant, and from this consequence another.

> Bernard le Bovier Fontenelle

[^0]
[^0]: * You should submit your solutions via Blackboard's Assignments module, preferably as a single pdf. If submission via Blackboard fails, please submit your work to your instructor by email or on paper.

