Mathematics 1120 H - Calculus II: Integrals and Series

Trent University, Winter 2024
Solutions to Assignment \#8

Calculating π

1. Verify that the series $\sum_{n=0}^{\infty} \frac{2}{(4 n+1)(4 n+3)}$ converges using one or more of the convergence tests given in class. [2]
Solution. There are several ways to do this. One of the simplest is to use the Basic Comparison Test. From $n=1$ on, we have

$$
0 \leq \frac{2}{(4 n+1)(4 n+3)}=\frac{2}{16 n^{2}+16 n+3}=\frac{1}{8 n^{2}+8 n+\frac{3}{2}}<\frac{1}{n^{2}}
$$

since $8 n^{2}+8 n+\frac{3}{2}>n^{2}$. As $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges by the p-Test because it has $p=2>1$ (or by question 3 on Assignment \#4), it follows by the Basic Comparison Test that $\sum_{n=0}^{\infty} \frac{2}{(4 n+1)(4 n+3)}$ converges as well.
Note. One could also use the Generalized p-Test, for something even simpler, or the Integral Test, for something a little harder, among the tests that we have seen in class.
2. Use SageMath to to find the sum of the series in 1. [1]

Solution. Here we go:

$$
\text { [1]: } \begin{aligned}
& \operatorname{var}\left(' n^{\prime}\right) \\
& \operatorname{sum}(2 /((4 * n+1) *(4 * n+3)), n, 0, \infty)
\end{aligned}
$$

[1]: $1 / 4 * \mathrm{pi}$
That is, $\sum_{n=0}^{\infty} \frac{2}{(4 n+1)(4 n+3)}=\frac{\pi}{4}$.
3. What series involving powers of x has $\frac{1}{1+x^{2}}$ as its sum? For which values of x does this series converge? [3]
Solution. Observe that $\frac{1}{1+x^{2}}=\frac{1}{1-\left(-x^{2}\right)}$. The latter version has the form of the sum of a geometric series with $a=1$ and $r=-x^{2}$, so

$$
\begin{aligned}
\frac{1}{1+x^{2}} & =\frac{1}{1-\left(-x^{2}\right)}=\frac{a}{1-r} \\
& =\sum_{n=0}^{\infty} a r^{n}=a+a r+a r^{2}+a r^{3}+\cdots \\
& =1+1\left(-x^{2}\right)+\left(-x^{2}\right)^{2}+1\left(-x^{2}\right)^{3}+\cdots \\
& =1-x^{2}+x^{4}-x^{6}+\cdots=\sum_{n=0}^{\infty}(-1)^{n} x^{2 n} .
\end{aligned}
$$

A geometric series (with $a \neq 0$) converges exactly when when the common ratio r has $|r|<1$. In this case, it means that the series we obtained above converges exactly when $|r|=\left|-x^{2}\right|=x^{2}<1$, i.e. exactly when $-1<x<1$.

Note. Observe that while the expression $\frac{1}{1+x^{2}}$ is defined for all $x \in \mathbb{R}$, the series it is the sum of, $\sum_{n=0}^{\infty}(-1)^{n} x^{2 n}$, converges only for $-1<x<1$. This kind of mismatch is a frequent problem when working with power series, that is, series involving powers of x.
4. Since $\frac{d}{d x} \arctan (x)=\frac{1}{1+x^{2}}$ what series involving powers of x should be equal to $\arctan (x)$ when it converges? For which values of x does this series converge? [3]
Hint: This series converges for almost, but not quite, the same values of x that the series in $\mathbf{3}$ does. Solution. Well, integration is the reverse operation to integration, so ...

$$
\begin{aligned}
\arctan (x) & =\int \frac{1}{1+x^{2}} d x=\int\left(\sum_{n=0}^{\infty}(-1)^{n} x^{2 n}\right) d x=\int\left(1-x^{2}+x^{4}-x^{6}+\cdots\right) d x \\
& =\int 1 d x-\int x^{2} d x+\int x^{4} d x-\int x^{6} d x+\cdots=C+x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\cdots \\
& =C+\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2 n+1}
\end{aligned}
$$

Since $\arctan (x)=0$ and $x^{2 n+1}=0$ for all $n \geq 0$ when $x=0$, it follows that $C=0$, and so:

$$
\arctan (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2 n+1}=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\cdots
$$

It remains to determine for which values of x this series converges. Observe that when $|x|>1$, we have

$$
\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n} x^{2 n+1}}{2 n+1}\right|=\lim _{n \rightarrow \infty} \frac{|x|^{2 n+1}}{2 n+1}=\infty \neq 0
$$

because exponential growth beats polynomial growth. Since $\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n} x^{2 n+1}}{2 n+1}\right| \neq 0$, we must have $\lim _{n \rightarrow \infty} \frac{(-1)^{n} x^{2 n+1}}{2 n+1} \neq 0$. This means, by the Divergence Test, that $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2 n+1}$ diverges when $|x|>1$, i.e. when $x<-1$ or when $x>1$.

On the other hand, suppose that $|x|<1$. In this case,

$$
\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n} x^{2 n+1}}{2 n+1}\right|=\lim _{n \rightarrow \infty} \frac{|x|^{2 n+1}}{2 n+1} \rightarrow 0
$$

so the Divergence Test is silent on whether the series converges or not. However, since we also have that the series alternates between positive and negative values because of the $(-1)^{n}$ component of the numerator, and $\left|\frac{(-1)^{n} x^{2 n+1}}{2 n+1}\right|=\frac{|x|^{2 n+1}}{2 n+1}$ is non-increasing when $|x|<1$, the Alternating Series Test tells us that $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2 n+1}$ converges when $|x|<1$.

It remains to check what happens when $x= \pm 1$. We could apply the Alternating Series Test to these borderline cases too, but, being lazy, we hand the problem off to SageMath:

```
[2]: sum( (-1) n/(2*n+1), n, 0, oo )
[2]: 1/4*pi
[3]: sum( (-1)^n*(-1)^ (2*n+1)/(2*n+1), n, 0, oo )
[3]: -1/4*pi
```

Thus $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2 n+1}$ converges for $x= \pm 1$.
Putting all of this together, we see that $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2 n+1}$ converges exactly when $-1 \leq x \leq 1$, and diverges when $x<-1$ or $x>1$.
5. Given that $\arctan (1)=\frac{\pi}{4}$, what is the connection betwen the series in $\mathbf{1}$ and $\mathbf{4}$?

Solution. Well, the series for $\arctan (x)$ with $x=1$ and the series in $\mathbf{1}$ both add up to $\frac{\pi}{4}$:

$$
\begin{aligned}
\frac{\pi}{4} & =\arctan (1)=\sum_{n=0}^{\infty} \frac{(-1)^{n} 1^{2 n+1}}{2 n+1}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\cdots \\
& =\sum_{n=0}^{\infty} \frac{2}{(4 n+1)(4 n+3)}=\frac{2}{3}+\frac{2}{35}+\frac{2}{99}+\cdots
\end{aligned}
$$

There is a deeper connection, though. Since $\frac{2}{(4 n+1)(4 n+3)}=\frac{1}{4 n+1}-\frac{1}{4 n+3}$,

$$
\begin{aligned}
\sum_{n=0}^{\infty} \frac{2}{(4 n+1)(4 n+3)} & =\sum_{n=0}^{\infty}\left[\frac{1}{4 n+1}-\frac{1}{4 n+3}\right] \\
& =\left[\frac{1}{1}-\frac{1}{3}\right]+\left[\frac{1}{5}-\frac{1}{7}\right]+\left[\frac{1}{9}-\frac{1}{11}\right]+\cdots \\
& =1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\cdots \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1} .
\end{aligned}
$$

That is, consecutive terms of the series for $\arctan (1)$ are a partial fraction decomposition of the terms of the series in $\mathbf{1}$, so the two series are basically different forms of the same thing.

Note. The series $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1}$ is called Gregory's Series in most modern textbooks. The earliest known version of this series is credited to the Indian mathematician and astronomer Mādhava of Sangamagrāma (c. 1340-1425), but it was rediscovered several times, including by the Scottish mathematician and astronomer James Gregory (1638-1675) in 1671 and the German polymath Gottfried Wilhelm Leibniz (1646-1716) in 1673. Leibniz, along with Isaac Newton (1642-1727), is credited with inventing modern calculus.

