Mathematics 1120H — Calculus II: Integrals and Series
TRENT UNIVERSITY, Winter 2024

Solutions to Assignment #8
Calculating 7
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1. Verify that the series Z (
n=0

tests given in class. [2]

SOLUTION. There are several ways to do this. One of the simplest is to use the Basic Comparison
Test. From n =1 on, we have
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since 8n? + 8n + % > n?. As g — converges by the p-Test because it has p = 2 > 1 (or by
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question 3 on Assignment #4), it follows by the Basic Comparison Test that Z (
n=0

converges as well. [J

NoOTE. One could also use the Generalized p-Test, for something even simpler, or the Integral Test,
for something a little harder, among the tests that we have seen in class.

2. Use SageMath to to find the sum of the series in 1. [1/

SOLUTION. Here we go:

[1]: wvar('n')
sum( 2/((4*n+1)*(4*n+3)), n, 0, oo )
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as its sum? For which values of « does this series
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converge? [3]
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SOLUTION. Observe that = . The latter version has the form of the sum of a
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geometric series with @ = 1 and r = —22, so
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A geometric series (with a # 0) converges exactly when when the common ratio r has |r| < 1. In
this case, it means that the series we obtained above converges exactly when |r| = ‘—xQ‘ =12% <1,
i.e. exactly when —1 <z < 1. I

NoTE. Observe that while the expression 172 is defined for all x € R, the series it is the sum of,
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Z(—l)”x2", converges only for —1 < = < 1. This kind of mismatch is a frequent problem when
n=0

working with power series, that is, series involving powers of z.
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4. Since e arctan(z) = T 22 what series involving powers of z should be equal to arctan(x)
x x
when it converges? For which values of x does this series converge? [3]
Hint: This series converges for almost, but not quite, the same values of x that the series in 3 does.

SOLUTION. WEell, integration is the reverse operation to integration, so ...
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Since arctan(z) = 0 and 22”1 =0 for all n > 0 when z = 0, it follows that C' = 0, and so:
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It remains to determine for which values of  this series converges. Observe that when |z| > 1,
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because exponential growth beats polynomial growth. Since lim # 0, we must have
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= 0. This means, by the Divergence Test, that Z o+ 1
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|x| > 1, i.e. when z < —1 or when x > 1.
On the other hand, suppose that |z| < 1. In this case,

(_1)nx2n+1
2n+1

diverges when

‘:L.|2n+1 N 0

n—oo 2n +1 — 00

lim
n—oo

)

so the Divergence Test is silent on whether the series converges or not. However, since we also have
that the series alternates between positive and negative values because of the (—1)" component of
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the numerator, and = is non-increasing when |z| < 1, the Alternating Series
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It remains to check what happens when x = +1. We could apply the Alternating Series Test
to these borderline cases too, but, being lazy, we hand the problem off to SageMath:

[2]: sum( (=1)"n/(2*n+1), n, 0, oo )

[2]: 1/4*pi

[3]: sum( (-1)"n*(-1)"(2%n+1)/(2*n+1), n, 0, oo )}
[3]: -1/4=pi
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Thus Z 2n T converges for x = +1.
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Putting all of this together, we see that Z converges exactly when —1 <z <1,
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and diverges when z < —lorz > 1. [J

5. Given that arctan (1) = %, what is the connection betwen the series in 1 and 47

SOLUTION. Well, the series for arctan(z) with z = 1 and the series in 1 both add up to T,
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There is a deeper connection, though. Since
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That is, consecutive terms of the series for arctan(1) are a partial fraction decomposition of the
terms of the series in 1, so the two series are basically different forms of the same thing. W

NoOTE. The series >~ oo Jr): is called Gregory’s Series in most modern textbooks. The earliest
known version of this series is credited to the Indian mathematician and astronomer Madhava of
Sangamagrama (c. 1340-1425), but it was rediscovered several times, including by the Scottish
mathematician and astronomer James Gregory (1638-1675) in 1671 and the German polymath
Gottfried Wilhelm Leibniz (1646-1716) in 1673. Leibniz, along with Isaac Newton (1642-1727), is
credited with inventing modern calculus.



