Mathematics 1120H - Calculus II: Integrals and Series
 Trent University, Winter 2024
 Assignment \#5
 The Gamma Function
 Due* just before midnight on Friday, 16 February.

Consider the Gamma function, the function of x defined by using x as a constant in an integral as follows:

$$
\Gamma(x)=\int_{0}^{\infty} t^{x-1} e^{-t} d t=\lim _{k \rightarrow \infty} \int_{0}^{k} t^{x-1} e^{-t} d t
$$

This definition turns out to make sense whenever $x>0$.

1. Use SageMath to compute $\Gamma\left(\frac{1}{2}\right), \Gamma(1), \Gamma\left(\frac{3}{2}\right), \Gamma(2), \Gamma\left(\frac{5}{2}\right), \Gamma(3), \Gamma\left(\frac{7}{2}\right)$, and $\Gamma(4)$. [4]
2. By hand, show that $\Gamma(x+1)=x \Gamma(x)$. [4]

You may have seen this before, but in case you haven't, n !, read as " n factorial", is defined for positive integers n as the product of all the positive integers less than or equal to n. That is, $n!=n(n-1)(n-2) \cdots 2 \cdot 1$. To make verious formulas in various parts of mathematics work nicely without having to make exceptions, 0 ! is defined to be 1 , i.e. $0!=1$.
3. Using the results of questions 1 and $\mathbf{2}$, explain why $\Gamma(n+1)=n$! for any integer $n \geq 0$. [2]

Note: There are some very different ways to define the Gamma function. For example, it can be defined using an infinite product,

$$
\Gamma(x)=\frac{e^{-\gamma x}}{x} \prod_{n=1}^{\infty} \frac{e^{x / n}}{1+\frac{x}{n}}=\frac{e^{-\gamma x}}{x} \cdot \frac{e^{x / 1}}{1+\frac{x}{1}} \cdot \frac{e^{x / 2}}{1+\frac{x}{2}} \cdot \frac{e^{x / 3}}{1+\frac{x}{3}} \cdots
$$

where $\gamma=\lim _{k \rightarrow \infty}\left[\left(\sum_{n=1}^{k} \frac{1}{n}\right)-\ln (k+1)\right]$ is the constant we encountered in Assignment \#4. This may be one reason it turns up in all sorts of places in mathematics, including applied mathematics, probability, and statistics.

The Gamma function also satisfies a lot of weird identities, such as $\Gamma(1-x) \Gamma(x)=\frac{\pi}{\sin (\pi x)}$ when $0<x<1$. Plugging $x=\frac{1}{2}$ into this identity is one way to get that $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$.

[^0]
[^0]: * You should submit your solutions via Blackboard's Assignments module, preferably as a single pdf. If submission via Blackboard fails, please submit your work to your instructor by email or on paper.

