
Mathematics 1120H – Calculus II: Integrals and Series
Trent University, Winter 2024

Assignment #4
Area versus Area

Due∗ just before midnight on Friday, 9 February.

Consider the region below the curve y =
1

x
and above the x-axis for 1 ≤ x < ∞, a piece of

which you can colour in below.

1. Compute each of the following as best you can using SageMath.

a.

∫ ∞
1

1

x
dx [0.5] b.

∞∑
n=1

1

n
[0.5] c.

∫ ∞
1

1

x2
dx [0.5] d.

∞∑
n=1

1

n2
[0.5]

Hint: It is possible that you might have done something similar to some of these previously. :-)

Solution. a. Taken from the solutions to Assignment #3, for question 1:

�

b. Let’s see if the sum behaves better than the corresponding integral did in Assignment #3:

Sadly, it doesn’t: you get a series of error messages, the last of which is “ValueError: Sum

is divergent.” That is, it doesn’t add up. We therefore try using the assume command:

We get pretty similar error messages again, the last of which is again “ValueError: Sum is

divergent.” Let’s try something analogous to what worked for the corresponding integral.

This gives us a symbolic description of what we are trying to compute, but not an answer. We

finally try a desperate last resort: computing the sum
10k∑
n=1

1

n
for k = 0, 1, . . . 5 to see where the

limit is tending:

∗ You should submit your solutions via Blackboard’s Assignments module, preferably as a single pdf. If sub-

mission via Blackboard fails, please submit your work to your instructor by email or on paper.
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Each time we add up
1

n
for n from 1 to the next power of 10, we increase the sum by about 2

or so. Since there are infinitely many powers of 10, the full sum ought to add 2 to itself infinitely
often, thus summing to infinity. We can tentatively – that is, not completely confidently – conclude

that

∞∑
n=1

1

n
=∞. �

c. This a slight modification of part of the solution to question 2 on Assignment #3:

�

d. The sum corresponding to the integral in c is also something SageMath can handle:

�

2. Explain why the sum
∞∑

n=1

1

n
is what it is because the integral

∫ ∞
1

1

x
dx is what it is. [2.5]

Hint: A picture may be worth 103 words . . . Pay attention to the green (upper) dashed lines from
1 onward.
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Solution. In this problem we are dealing with y =
1

x
and its integer values. Consider what is

happening on the interval [n, n+ 1] for an integer n ≥ 1. The green (upper) dashed line is the top

of a rectangle of height
1

n
and width 1, and hence with area

1

n
· 1 =

1

n
. This rectangle contains the

area between
1

x
and the x-axis for n ≤ x ≤ n+ 1, so

∫ n+1

n

1

x
dx ≤ 1

n
. It follows that

∞ =

∫ ∞
1

1

x
dx =

∞∑
n=1

∫ n+1

n

1

x
dx ≤

∞∑
n=1

1

n
,

which is only possible if

∞∑
n=1

1

n
=∞ too. �

3. Explain why the sum
∞∑

n=1

1

n2
has a finite value because the integral

∫ ∞
1

1

x2
dx has a finite

value. [2.5]

Hint: Look at the picture above again. This time, pay attention to the red (lower, and between 0
and 1) dashed lines, especially from 1 onwards.

Solution. In this problem we are dealing with y =
1

x2
and its integer values. Consider what is

happening on the interval [n, n + 1] for an integer n ≥ 1. The red (lower) dashed line is the top

of a rectangle of height
1

(n+ 1)2
and width 1, and hence with area

1

(n+ 1)2
· 1 =

1

(n+ 1)2
. This

rectangle is contained in the area between
1

x2
and the x-axis for n ≤ x ≤ n + 1, so

1

(n+ 1)2
≤∫ n+1

n

1

x2
dx. Since

1

(n+ 1)2
is positive for every n ≥ 1, and given the answer to 1c, it follows that

0 <

∞∑
k=2

1

k2
=

∞∑
n=1

(n+ 1)2

≤

∞∑
n=1

∞∑
n=1

∫ n+1

n

1

x2
dx =

∫ ∞
1

1

x2
= 1,

so it must be the case that 1 <

∞∑
n=1

1

n2
= 1 +

∞∑
n=2

1

n2
≤ 1 + 1 = 2. �

4. Explain why the limit lim
k→∞

[(
k∑

n=1

1

n

)
− ln(k + 1)

]
exists and is between 0 and 1. [2.5]

Hint: Look at the picture yet again. This time, pay attention to the both the green (upper) and
the red (lower) dashed lines from 1 onwards.

Solution. In this problem we are again dealing with y =
1

x
and its integer values. Consider

what is happening on the interval [n, n + 1] for an integer n ≥ 1. The green (upper) dashed line

is the top of a rectangle of height
1

n
and width 1, and hence with area

1

n
· 1 =

1

n
, while the

red (lower) dashed line is the top of a rectangle of height
1

n+ 1
and width 1, and hence with
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area
1

n+ 1
· 1 =

1

n+ 1
. On the other hand, the area of the region between

1

x
and the x-axis for

n ≤ x ≤ n + 1, given by

∫ n+1

n

1

x
dx, is contained in larger rectangle and contains the smaller

rectangle, so
1

n+ 1
<

∫ n+1

n

1

x
dx <

1

n
. It follows that(

k∑
n=1

1

n

)
− ln(k + 1) =

(
k∑

n=1

1

n

)
− ln(k + 1) =

(
k∑

n=1

1

n

)
−
∫ k+1

1

1

x
dx

=

(
k∑

n=1

1

n

)
−

(
k∑

n=1

∫ n+1

n

1

x
dx

)
=

k∑
n=1

(
1

n
−
∫ n+1

n

1

x
dx

)

≤
k∑

n=1

(
1

n
− 1

n+ 1

)
=

(
1

1
− 1

2

)
+

(
1

2
− 1

3

)
−
(

1

3
− 1

4

)
+ · · ·+

(
1

k
− 1

k + 1

)
= 1− 1

k + 1
.

Note that

(
k∑

n=1

1

n

)
− ln(k + 1) must be positive because

∫ n+1

n

1

x
dx <

1

n
for each n ≥ 1.

It follows from all of the above that

0 < lim
k→∞

[(
k∑

n=1

1

n

)
− ln(k + 1)

]
≤ lim

k→∞

[
1− 1

k + 1

]
= 1− 0 = 1,

as desired. �

5. Use SageMath to (approximately) evaluate lim
k→∞

[(
k∑

n=1

1

n

)
− ln(k + 1)

]
as best you can. [0.5]

Solution. Trying to use SageMath to evaluate this limit exactly runs into the same sort of

problems that getting it to handle the harmonic series

∞∑
n=1

1

n
has. For example:

The only thing to do, sadly, is to emulate what we did in that case and see what happens when
we plug in large values:
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It seems that lim
k→∞

[(
k∑

n=1

1

n

)
− ln(k + 1)

]
is likely to be a number a little over 0.577, which

fits with the conclusion of the previous problem. �

Note: It is unknown whether the value of the limit in the last two questions, usually denoted by
γ and often called the Euler-Mascheroni constant, is rational or irrational. If you can prove it one
way or the other before the end of the term, your instructor will be very generous with your mark.
This constant turns up in various odd places in mathematics, including applied mathematics.
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