Mathematics 1120H - Calculus II: Integrals and Series

Trent University, Winter 2024

Assignment \#3

Area versus Volume
Due* just before midnight on Friday, 2 February.
Consider the region below the curve $y=\frac{1}{x}$ and above the x-axis for $1 \leq x<\infty$, a piece of which you can colour in below.

1. Compute the area of the given region, both by hand and using SageMath. [4]

NOTE. You'll probably set up an integral of the form $\int_{c}^{\infty} f(x) d x$ where c is a constant. This kind of "improper integral" should be computed using a limit: $\int_{c}^{\infty} f(x) d x=\lim _{t \rightarrow \infty} \int_{c}^{t} f(x) d x$. That is, work out the definite integral first, then take the limit. For more about such integrals, which will encounter in class later on, you can check out $\S 9.8$ in the textbook, or the lectures on this topic from past iterations of 1120 H on the archive page at: http://euclid.trentu.ca/math/sb/calculus/
2. Compute the volume of the solid obtained by revolving the given region about the x-axis, both by hand and using SageMath. [4]
3. There is something a little paradoxical about the (correct :-) answers to $\mathbf{1}$ and $\mathbf{2}$. What is the paradox? Explain what's going on as best you can. [2]

[^0]
[^0]: * You should submit your solutions via Blackboard's Assignments module, preferably as a single pdf. If submission via Blackboard fails, please submit your work to your instructor by email or on paper.

