Mathematics 1120H - Calculus II: Integrals and Series

Trent University, Winter 2024
Solutions to Assignment \#3
Area versus Volume
Due* just before midnight on Friday, 2 February.
Consider the region below the curve $y=\frac{1}{x}$ and above the x-axis for $1 \leq x<\infty$, a piece of which you can colour in below.

1. Compute the area of the given region, both by hand and using SageMath. [4]

Note. You'll probably set up an integral of the form $\int_{c}^{\infty} f(x) d x$ where c is a constant. This kind of "improper integral" should be computed using a limit: $\int_{c}^{\infty} f(x) d x=\lim _{t \rightarrow \infty} \int_{c}^{t} f(x) d x$. That is, work out the definite integral first, then take the limit. For more about such integrals, which will encounter in class later on, you can check out $\S 9.8$ in the textbook, or the lectures on this topic from past iterations of 1120 H on the archive page at: http://euclid.trentu.ca/math/sb/calculus/ Solution. The area of the region below the curve $y=\frac{1}{x}$ and above the x-axis for $1 \leq x<\infty$ should be - and is! - given by the integral $\int_{1}^{\infty} \frac{1}{x} d x$, which we compute as suggested in the note.

$$
\begin{aligned}
\text { By hand: Area } & =\int_{1}^{\infty} \frac{1}{x} d x=\lim _{t \rightarrow \infty} \int_{1}^{t} \frac{1}{x} d x=\left.\lim _{t \rightarrow \infty} \ln (x)\right|_{1} ^{t} \\
& =\lim _{t \rightarrow \infty}[\ln (t)-\ln (1)]=\lim _{t \rightarrow \infty}[\ln (t)-0] \\
& =\lim _{t \rightarrow \infty} \ln (t)=\infty
\end{aligned}
$$

With SageMath:

```
[3]: var('t')
    assume(t>1)
    limit( integral( 1/x, x, 1, t), t=oo )
[3]: +Infinity
```

[^0]Note the use of the assume command. Without giving a SageMath a little help as to which direction you're integrating in, you will get error messages, just as in Assignment \#2. Just trying integral ($1 / \mathrm{x}, \mathrm{x}, 1, \circ \circ$) doesn't work either, though the error messages correctly identify the integral as being "divergent".

It follows that the region has infinite area. This ought not be too much of a surprise because the region is infinite in the positive x direction.
2. Compute the volume of the solid obtained by revolving the given region about the x-axis, both by hand and using SageMath. [4]
Solution. Here is a sketch of the solid:

The cross-section at x of this solid of revolution is a disk with radius $r=\frac{1}{x}$ and hence area $A(x)=\pi r^{2}=\pi\left(\frac{1}{x}\right)^{2}=\frac{\pi}{x^{2}}$. We compute the volume accordingly, once again using the method suggested in the note.

$$
\begin{aligned}
\text { By hand: Volume } & =\int_{1}^{\infty} A(x) d x=\int_{1}^{\infty} \frac{\pi}{x^{2}} d x=\lim _{t \rightarrow \infty} \int_{1}^{t} \frac{\pi}{x^{2}} d x=\left.\lim _{t \rightarrow \infty} \frac{-\pi}{x}\right|_{1} ^{t} \\
& =\lim _{t \rightarrow \infty}^{t}\left[\frac{-\pi}{t}-\frac{\pi}{1}\right]=\lim _{t \rightarrow \infty}\left[\frac{-\pi}{t}+\pi\right]=-0+\pi=\pi
\end{aligned}
$$

With SageMath: We evaluate the integral in the same way as the one in question 1, with the previous use of assume ($\mathrm{t}>1$) still active:

```
[4]: limit( integral( pi/x^2, x, 1, t ), t=oo )
[4]: pi
```

In this case, though, having SageMath evaluate the integral directly works properly, since it is not divergent:

```
[5]: integral( pi/x^2, x, 1, oo )
[5]: pi
```

Thus the volume of this "infinite trumpet" is simply π.
3. There is something a little paradoxical about the (correct :-) answers to $\mathbf{1}$ and $\mathbf{2}$. What is the paradox? Explain what's going on as best you can. [2]
Solution. Hmm - we revolved a region with infinite area to get a solid with a finite volume of π, which seem a at least a little counterintuitive ...

The trick here is that the cross-sectional area of the solid, $A(x)=\frac{\pi}{x^{2}}$, shrinks faster as x increases than the corresponding cross-sectional length of the region, $y=y-0=\frac{1}{x}$, does. This makes it possible for the integral of the cross-sectional area that computes the volume to "add up" to much less than the integral of the cross-sectional length that computes the area of the region. We'll be seeing more examples of this kind of behavious later in the course, especially when we get to studying series.

[^0]: * You should submit your solutions via Blackboard's Assignments module, preferably as a single pdf. If submission via Blackboard fails, please submit your work to your instructor by email or on paper.

