Mathematics 1120H - Calculus II: Integrals and Series
 Trent University, Winter 2024
 Assignment \#11
 Series of Power II: Taylor's Formula vs. Algebra
 Due* just before midnight on Friday, 5 April.

Please do all three of the following problems by hand. No SageMath this time, except maybe to check your answers.

1. For what values of x does the series $\sum_{n=0}^{\infty}(-1)^{n}(n+1) x^{n}$ converge? [3]
2. Use Taylor's Formula to show that $\frac{1}{(1+x)^{2}}=\sum_{n=0}^{\infty}(-1)^{n}(n+1) x^{n}$ when the series converges. [4]
3. Use algebra to show that $\frac{1}{(1+x)^{2}}=\sum_{n=0}^{\infty}(-1)^{n}(n+1) x^{n}$ when the series converges. [3]

Hint: $\frac{1}{1+x}=\frac{1}{1-(-x)}$ is the sum of the geometric series $\sum_{n=0}^{\infty}(-1)^{n} x^{n}=1-x+x^{2}-x^{3}+\cdots$ when that series converges.

Another mathematics nursery rhyme:

Little Jack Horner
Sat in the corner
trying to work out π.
He said 'It's minus the logarithm
Of minus one to the i.'
Also from Seven Years of Manifold 1968-1980.

[^0]
[^0]: * You should submit your solutions via Blackboard's Assignments module, preferably as a single pdf. If submission via Blackboard fails, please submit your work to your instructor by email or on paper.

