Mathematics 1120H — Calculus II: Integrals and Series
TRENT UNIVERSITY, Winter 2024

Solutions to Assignment #10
Series of Power
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1. For what values of x does the series Z ( converge? [4]
n=0

(2n +1)!
SOLUTION. Our first resort for such questions involving power series is the Ratio Test.
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Note that x, and hence 2, is a constant as far as n is concerned. Since the limit works out to be
less than 1 no matter what real value = has, thes series converges by the Ratio Test for all z. [J
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2. What function does the series Z ( equal when it converges? [1/
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SOLUTION. Being lazy, we hand the problem off to SageMath.
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3. For what values of 2 does the series Z(n + 1)a™ converge? [4]

n=0

SOLUTION. Again, our first resort for such questions involving power series is the Ratio Test.
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By the Ratio Test, it follows that the series converges when |z| < 1, i.e. when =1 < x < 1, and
diverges when |z| > 1, i.e. when # <=1 or when > 1. When |z| = 1, i.e. when z = %1, the
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Ratio Test tells us nothing, so we have to check whether Z(n—i— 1)(—1)" and Z(n—i— 1)1™ converge
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or diverge using some other test(s). Observe that
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so the series for both x = —1 and x = 1 diverge by the Divergence Test.



Thus Z(n + 1)z" converges when —1 < = < 1 and diverges when x < —1 or z > 1. O
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4. What function does the series Z(n + 1)2™ equal when it converges? [1]
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SoLUTION 1. Being lazy, we hand the problem off to SageMath.
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SOLUTION II. Being clever, we observe that /(n +1)z"de=(n+1) i 2"t for each n > 0,
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at least up to some constant. It follows, at least when everything converges, that
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for some constant C. This looks an awful lot like the geometric series Z z* which we know sums
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to 1 when it converges. Since
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