# Mathematics 1120H - Calculus II: Integrals and Series <br> Trent University, Winter 2024 <br> Solutions to Assignment \#10 <br> <br> Series of Power 

 <br> <br> Series of Power}

1. For what values of $x$ does the series $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}$ converge? [4]

Solution. Our first resort for such questions involving power series is the Ratio Test.

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{\frac{(-1)^{n+1} x^{2(n+1)+1}}{(2(n+1)+1)!}}{\frac{(-1)^{x} x^{2 n+1}}{(2 n+1)!}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n+1} x^{2 n+3}}{(2 n+3)!} \cdot \frac{(2 n+1)!}{(-1)^{n} x^{2 n+1}}\right| \\
& =\lim _{n \rightarrow \infty}\left|\frac{(-1) x^{2}}{(2 n+3)(2 n+2)}\right|=\lim _{n \rightarrow \infty} \frac{x^{2}}{(2 n+3)(2 n+2)} \rightarrow x^{2}=0<1
\end{aligned}
$$

Note that $x$, and hence $x^{2}$, is a constant as far as $n$ is concerned. Since the limit works out to be less than 1 no matter what real value $x$ has, thes series converges by the Ratio Test for all $x$.
2. What function does the series $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}$ equal when it converges? [1]

Solution. Being lazy, we hand the problem off to SageMath.

```
[2]: sum( (-1)^n*x^(2*n+1)/factorial(2*n+1), n, 0, \infty)
[2]: sin(x)
```

Thus $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}=\sin (x)$.
3. For what values of $x$ does the series $\sum_{n=0}^{\infty}(n+1) x^{n}$ converge? [4]

Solution. Again, our first resort for such questions involving power series is the Ratio Test.

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{((n+1)+1) x^{n+1}}{(n+1) x^{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(n+2) x}{n+1}\right|=|x| \cdot \lim _{n \rightarrow \infty} \frac{n+2}{n+1} \\
& =|x| \cdot \lim _{n \rightarrow \infty} \frac{n+2}{n+1} \cdot \frac{1}{n} \frac{1}{n}=|x| \cdot \lim _{n \rightarrow \infty} \frac{1+\frac{2}{n}}{1+\frac{1}{n}}=|x| \cdot \frac{1+0}{1+0}=|x|
\end{aligned}
$$

By the Ratio Test, it follows that the series converges when $|x|<1$, i.e. when $=1<x<1$, and diverges when $|x|>1$, i.e. when $x<=1$ or when $x>1$. When $|x|=1$, i.e. when $x= \pm 1$, the Ratio Test tells us nothing, so we have to check whether $\sum_{n=0}^{\infty}(n+1)(-1)^{n}$ and $\sum_{n=0}^{\infty}(n+1) 1^{n}$ converge or diverge using some other test(s). Observe that

$$
\lim _{n \rightarrow \infty}\left|(n+1)(-1)^{n}\right|=\lim _{n \rightarrow \infty}\left|(n+1) 1^{n}\right|=\lim _{n \rightarrow \infty}(n+1)=\infty \neq 0,
$$

so the series for both $x=-1$ and $x=1$ diverge by the Divergence Test.

Thus $\sum_{n=0}^{\infty}(n+1) x^{n}$ converges when $-1<x<1$ and diverges when $x \leq-1$ or $x \geq 1$.
4. What function does the series $\sum_{n=0}^{\infty}(n+1) x^{n}$ equal when it converges? [1]

Solution I. Being lazy, we hand the problem off to SageMath.

$$
\begin{aligned}
& {[1]: \begin{array}{l}
\operatorname{var}\left(\mathrm{I}^{\prime}\right) \\
\operatorname{sum}\left((n+1) * x^{-} n, n, 0, \infty\right) \\
{[1]: 1 /\left(x^{-} 2-2 * x+1\right)}
\end{array}}
\end{aligned}
$$

Thus $\sum_{n=0}^{\infty}(n+1) x^{n}=\frac{1}{x^{2}-2 x+1}$.
Solution II. Being clever, we observe that $\int(n+1) x^{n} d x=(n+1) \frac{x^{n+1}}{n+1}=x^{n+1}$ for each $n \geq 0$, at least up to some constant. It follows, at least when everything converges, that

$$
\int\left[\sum_{n=0}^{\infty}(n+1) x^{n}\right] d x=\sum_{n=0}^{\infty} \int(n+1) x^{n} d x=C+\sum_{n=0} x^{n+1}=C+\sum_{k=1}^{\infty} x^{k}
$$

for some constant $C$. This looks an awful lot like the geometric series $\sum_{k=0}^{\infty} x^{k}$ which we know sums to $\frac{1}{1-x}$ when it converges. Since

$$
\frac{d}{d x}\left(\frac{1}{1-x}\right)=\frac{-1}{(1-x)^{2}} \cdot \frac{d}{d x}(1-x)=\frac{-1}{(1-x)^{2}}(-1)=\frac{1}{(1-x)^{2}}=\frac{1}{x^{2}-2 x+1}
$$

and

$$
\frac{d}{d x}\left(\sum_{k=0}^{\infty} x^{k}\right)=\sum_{k=0}^{\infty} \frac{d}{d x} x^{k}=\sum_{k=0}^{\infty} k x^{k-1}=\sum_{n=0}^{\infty}(n+1) x^{n},
$$

it follows that $\sum_{n=0}^{\infty}(n+1) x^{n}=\frac{1}{x^{2}-2 x+1}$.

