
Mathematics 1120H – Calculus II: Integrals and Series
Trent University, Winter 2022

Assignment #2
Let’s integrate!

Due on Friday, 28 January. (May be submitted on paper or via Blackboard.∗)

Please show all your work. As with all the assignments in this course, unless stated
otherwise on the assignment, you are permitted to work together and look things up, so
long as you acknowledge the sources you used and the people you worked with.

1. Compute the indefinite integral

∫
sin (ln(x)) dx. [3]

Solution. We will integration by parts twice, each time using the same “dummy product”
trick used to integrate ln(x) and arctan(x), which will get us to a multiple of the integral
we started with, and then solve for it.∫

sin (ln(x)) dx = x sin (ln(x)) −
∫

cos (ln(x)) · 1

x
· x dx

[Using u = sin (ln(x)) and v′ = 1, so u′ = cos (ln(x)) · 1

x
and v = x.]

= x sin (ln(x)) −
∫

cos (ln(x)) dx

= x sin (ln(x)) −
[
x cos (ln(x)) −

∫
(−1) sin (ln(x)) · 1

x
· x dx

]
[Using u = cos (ln(x)) and v′ = 1, so u′ = − sin (ln(x)) · 1

x
and v = x.]

= x sin (ln(x)) −
[
x cos (ln(x)) +

∫
sin (ln(x)) dx

]
= x sin (ln(x)) − x cos (ln(x)) −

∫
sin (ln(x)) dx

We thus have∫
sin (ln(x)) dx = x sin (ln(x)) − x cos (ln(x)) −

∫
sin (ln(x)) dx ,

from which it follows that

2

∫
sin (ln(x)) dx = x sin (ln(x)) − x cos (ln(x)) ,

so ∫
sin (ln(x)) dx =

1

2
[x sin (ln(x)) − x cos (ln(x))] + C ,

remembering at the last minute that we are dealing with an indefinite integral, so a generic
constant of integration should appear in the final answer. �

∗ All else failing, please email your solutions to the instructor at: sbilaniuk@trentu.ca
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An Alternate Approach. Question 1 can also be done, or at least begun, by taking
inspiration from trigonometric substitutions, where one substitutes a function in a new
variable for x. In this case, one can try the substitution x = et, so dx = et dt, to get rid of
the natural logarithm:∫

sin (ln(x)) dx =

∫
sin
(
ln
(
et
))

· et dt =

∫
et sin(t) dt

After doing so, one may continue with integration by parts without having to resort to
the “dummy product” trick, though one will still have to use parts twice and solve for∫

et sin(t) dt, after which one will have to undo the substitution to put the antiderivative

back in terms of x. �

In questions 2 and 3, and assuming n ≥ 0, let Pn(x) denote the polynomial such

that

∫
xnex dx = Pn(x)ex + C. Note that P0(x) = 1 because x0 = 1 and ex is its own

antiderivative.

2. Show that Pn(x) = xn − Pn−1(x) for n ≥ 1. [3]

Note: As many noticed, this formula is actually incorrect because something is missing.
The correct formula is Pn(x) = xn − nPn−1(x). The point to leaving out the n was to try
to get those attempting the problem to realize that one cannot always trust what one is
given. It was done on purpose this time, but textbooks, reference works, and computer
software are created and ultimately checked by humans, who make honest mistakes . . .

Solution. Assume n ≥ 1. On the one hand, we have that

∫
xnex dx = Pn(x)ex + C

from the definition of Pn(x). On the other hand, we can apply integration by parts to this
integral, with u = xn and v′ = ex, so u′ = nxn−1 and v = ex, so∫

xnex dx = xnex −
∫

nxn−1ex dx = xnex − n

∫
xn−1ex dx .

By the definition of Pn−1(x), it follows that∫
xnex dx = xnex − n

∫
xn−1ex dx = xnex − Pn−1(x)ex + C = (xn − Pn−1(x)) ex + C ,

and hence that

Pn(x)ex + C =

∫
xnex dx = (xn − Pn−1(x)) ex + C .

Comparing the left and right ends of this sequence of equations, this is only possible if
Pn(x) = xn − nPn−1(x), as desired. �
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3. Use the relation in 2 to find Pn(x) for n = 1, 2, 3, and 4. [2]

Solution. As noted on this assignment, it follows from

∫
x0ex dx =

∫
ex dx = ex + C

that P0(x) = 1. Applying the (correct!) formula from 2, namely Pn(x) = xn − nPn−1(x),
over and over, it then follows that:

P1(x) = x1 − 1P0(x) = x− 1 · 1 = x− 1

P2(x) = x2 − 2P1(x) = x2 − 2(x− 1) = x2 − 2x + 2

P3(x) = x3 − 3P2(x) = x3 − 3
(
x2 − 2x + 2

)
= x3 − 3x2 + 6x− 6

P4(x) = x4 − 4P3(x) = x4 − 4
(
x3 − 3x2 + 6x− 6

)
= x4 − 4x3 + 12x2 − 24x + 24

This kind of trick was valuable in the days before computers, because it let one find the

antiderivative of

∫
xnex dx for large n with a lot less computation than integrating it

directly. �
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