
Mathematics 1120H – Calculus II: Integrals and Series
Trent University, Winter 2022

Solutions to Assignment #10
A Power Series For ex

Due on Friday, 1 April.

Please show all your work. As with all the assignments in this course, unless stated
otherwise on the assignment, you are permitted to work together and look things up, so
long as you acknowledge the sources you used and the people you worked with.

Note. A large part of the solutions below were presented in the first lecture on power
series, on Friday, 26 March. Never let it be said that attendance, virtual or otherwise, has
no rewards. :-)

In what follows, let f(x) = ex and let g(x) =

∞∑
n=0

xn

n!
.

1. Determine for which values of x the series defining g(x) converges conditionally, con-
verges absolutely, or diverges. [4]

Solution. We will apply the Ratio Test:
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Since the limit is 0 no matter what the value of x is, and 0 < 1, it follows by the Ratio

Test that the series
∞∑
n=0

xn

n!
converges absolutely for all x. �

In question 2, you may assume that one can differentiate power series term-by-term
for those values of x for which the power series converges.

2. Show that both y = f(x) and y = g(x) satisfy the differential equation
dy

dx
= y. [2]

Solution. For y = f(x) = ex:
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ex = ex = y. For y = g(x) =
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:
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Thus y = f(x) = ex and y = g(x) =

∞∑
n=0

xn

n!
both satisfy

dy

dx
= y. �

3. Use your answer to 2 to help conclude that f(x) = g(x). [2]

Solution. We know from 2 that both y = f(x) = ex and y = g(x) =

∞∑
n=0

xn

n!
satisfy the

differential equation
dy

dx
= y. In addition to this, the two functions are equal at x = 0:
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02

2
+

03

6
+ · · ·+ 0k

k!
+ · · · =

∑
n=0

0n

n!
= g(0)

Since the two functions satisfy the same differential equations with the same initial condi-
tion, they must be equal.† This is basically because they have the same slopes starting at
the same point. �

For question 4, you may assume that, for all x ∈ R, cos(x) =
∞∑
k=0

(−1)kx2k

(2k)!
and

sin(x) =
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. In addition to this you may assume that i is the square root of

−1, i.e. i2 = −1.

4. Use what you showed in answering question 3, plus the information above, to prove
Euler’s Formula: eiθ = cos(θ) + i sin(θ). [2]

Note. Plugging in θ = π into Euler’s Formula gives the equation eiπ = −1, which is also
sometimes called Euler’s Formula.

Solution. Off we go to do some algebra, some algebra, some algebra . . . Note that
because i2 = −1, we have i2k = (−1)k and i2k+1 = (−1)ki.
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† This is, more or less, the uniqueness part of the Existence and Uniqueness Theorem for solutions to

a (system of) differential equation(s).
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