
Mathematics 1120H – Calculus II: Integrals and Series
Trent University, Winter 2022

Solutions to Assignment #1
Computing definite integrals with the Left-Hand Rule

Recall that the definite integral

∫ b

a

f(x) dx is the signed or weighted area of the region

between y = f(x) and the x-axis for a ≤ x ≤ b, where area above the x-axis is added and
area below the x-axis is subtracted. It seems to be pretty hard to turn this idea into a
complete and precise definition that can be used to prove all the basic properties of the
definite integral, much less prove the Fundamental Theorem of Calculus, which relates the
definite integral to computing antiderivatives. Indeed, many first-year calculus textbooks
give highly simplified versions or even skip it entirely.† The definition given in §7.2 of our
textbook is one of the more common highly simplified versions of this definition, often called
the Left-Hand Rule. Please (at least!) skim through §7.2 before doing this assignment; for
your convenience a summary of what you will need to know follows:

Left-Hand Rule. Suppose f(x) is defined for all x in [a, b] and is continuous at all but
finitely many points of [a, b]. Then:

∫ b

a

f(x) dx = lim
n→∞

[
n∑

i=1

b− a

n
f

(
a + (i− 1) · b− a

n

)]

The idea is to divide up the interval [a, b] into n subintervals of equal width 4x =
b− a

n
, so the ith subinterval, going from left to right and where 1 ≤ i ≤ n, will be[

(i− 1) · b− a

n
, i · b− a

n

]
. Each subinterval serves as the base of a rectangle of height hi =

f

(
a + (i− 1) · b− a

n

)
, which must then have area 4x ·hi =

b− a

n
f

(
a + (i− 1) · b− a

n

)
.

It’s called the Left-Hand Rule because it uses the left endpoint of each subinterval to
evaluate f(x) at to determine the height of the rectangle which has that subinterval as

† You can find the simplest version of a precise and complete definition of the definite integral that

your instructor knows of in A Precise Definition of the Definite Integral , a handout which is among the

supplementary materials in the Course Content section of the course Blackboard site.
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a base. Note that when the function dips below the x-axis, the rectangles have negative
height and so the area formula gives negative areas.

The sum of the areas of these rectangles, the nth Left-Hand Rule sum for

∫ b

a

f(x) dx,

namely

n∑
i=1

b− a

n
f

(
a + (i− 1) · b− a

n

)
, approximates the area computed by

∫ b

a

f(x) dx.

As we increase n and so shrink the width of the rectangles we get better and better approx-
imations to the definite integral. The Left-Hand Rule will, in principle, properly compute∫ b

a

f(x) dx as long as f(x) has at most finitely many removable or jump discontinuities

and no vertical asymptotes in the interval [a, b]. Even some basic properties of definite
integrals are hard to get if one were to try to use the Left-Hand Rule as the definition:

1. Suppose f(x) is a function which is defined and continuous – and hence is integrable
– on

[
−1,
√

2
]
. Explain why we would have a problem justifying

∫ 0

−1
f(x) dx +

∫ √2

0

f(x) dx =

∫ √2

−1
f(x) dx

if we used the Left-Hand Rule (or any rule that relies on subdividing [a, b] into equal

subintervals) as the actual definition of
∫ b

a
f(x) dx. [2]

Hint. It matters here that
√

2 is irrational.

Solution. The easiest way to get the integrals to add up properly if one uses the Left-
Hand Rule as the definition would be if one could combine the Left-Hand Rule limits on
the left-hand side to make the limit on the right-hand side. This, because a sum for the
entire interval

[
−1,
√

2
]

must have rectangles of equal width, is only feasible if the two
sums have rectangles that have the same width, which means that one must be able to
subdivide the intervals [−1, 0] and

[
0,
√

2
]

into finitely many pieces of equal width to those
in the other interval.

Suppose, by way of contradiction, that it were actually possible to divide [−1, 0]

into n equal pieces, each of which would have to have width
0− (−1)

n
− 1

n
, and at the

same time divide up
[
0,
√

2
]

into k equal pieces, each of which would have to have width√
2− 0

k
=

√
2

k
, such that the pieces in each interval are equal in width to those in the

other interval, i.e.
1

n
=

√
2

k
.
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However, if
1

n
=

√
2

k
were true, then we would have that

√
2 =

k

n
, where n and k

are positive integers. This would mean that
√

2 was a ratio of integers, that is, that it
was a rational number. Since

√
2 is famously irrational, it cannot be written as a ratio

of integers, and so it is impossible to subdivide the two intervals into equal pieces of the
same width as those in the other interval.

It follows that if one uses the Left-Hand Rule as the definition of the definite integral,
the easiest way to show the given additive property of definite integrals is not going to work.
One can try to work around this (generally requiring some very nasty limit arguments),
but serious definitions of the definite integral use variable-width subintervals to get their
rectangles. �

2. Compute the nth Left-Hand Rule sum for

∫ 4

0

(
x2 + 2x + 3

)
dx for n = 4, 8, 16, and

32. [2]

Hint. Use mathematical software such as SageMath. (Unless you’re a mathochist. :-)

Solution. The nth Left-Hand Rule sum for

∫ 4

0

(
x2 + 2x + 3

)
dx is given by

n∑
i=1

4− 0

n
f

(
0 + (i− 1) · 4− 0

n

)
=

n∑
i=1

4

n
f

(
(i− 1) · 4

n

)
,

where f(x) = x2 + 2x + 3. One could rearrange this in various ways to make it easier to

compute, such as factoring the rectangle width
4

n
out of the sum, but since we’re getting

a computer to do the work, and the job will not strain it in the least, why bother?
Here is your instructor’s interaction with SageMath to do this problem. Note that this

is using a local installation of SageMath in a terminal window rather than using a remote
installation, such as sage.trentu.ca, via a Jupyter notebook.

sage: f(x) = x^2 + 2*x + 3

sage: var("n")

n

sage: var("i")

i

sage: g(n) = sum((4/n)*f((i-1)*4/n),i,1,n)

sage: g(4)

38

sage: g(8)

87/2

sage: g(16)

371/8

sage: g(32)

1531/32
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sage: N(87/2)

43.5000000000000

sage: N(371/8)

46.3750000000000

sage: N(1531/32)

47.8437500000000

The last few commands are to check on what the fractions really amount to. Note that

the values are getting closer to the true value of
148

3
≈ 49.3333, as computed in the next

two solutions. �

3. Use the Left-Hand Rule to compute

∫ 4

0

(
x2 + 2x + 3

)
dx precisely. [4]

Hint. You’ll need to do some algebra before taking the limit and may use the summation

formulas

k∑
i=1

i =
k(k + 1)

2
and

k∑
i=1

i2 =
k(k + 1)(2k + 1)

6
.

Solution. If

∫ b

a

f(x) dx =

∫ 4

0

(
x2 + 2x + 3

)
dx, then a = 0, b = 4, and f(x) = x2+2x+3

when we apply the Left-Hand Rule definition of the definite integral. We plug these into
the Left-Hand Rule formula and simplify:

∫ 4

0

(
x2 + 2x + 3

)
dx = lim

n→∞

[
n∑

i=1

4− 0

n
f

(
0 + (i− 1) · 4− 0

n

)]

= lim
n→∞

[
n∑

i=1

4

n
f

(
(i− 1) · 4

n

)]
= lim

n→∞

4

n

n∑
i=1

f

(
4

n
(i− 1)

)

= lim
n→∞

4

n

n∑
i=1

[(
4

n
(i− 1)

)2

+ 2

(
4

n
(i− 1)

)
+ 3

]

= lim
n→∞

4

n

n∑
i=1

[
16

n2

(
i2 − 2i + 1

)
+

8

n
(i− 1)) + 3

]

= lim
n→∞

4

n

n∑
i=1

[
16

n2
i2 − 32

n2
i +

16

n2
+

8

n
i− 8

n
+ 3

]

We now divide up the sum we have into smaller, simpler, sums, isolate the the sums

we have summation formulas for – namely
n∑

i=1

1 = n,
n∑

i=1

i =
n(n + 1)

2
, and

n∑
i=1

i2 =

n(n + 1)(2n + 1)

6
– replace them with these summation formulas, and then simplify away

until we can compute the limit:
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∫ 4

0

(
x2 + 2x + 3

)
dx = lim

n→∞

4

n

n∑
i=1

[
16

n2
i2 − 32

n2
i +

16

n2
+

8

n
i− 8

n
+ 3

]

= lim
n→∞

4

n

[(
n∑

i=1

16

n2
i2

)
−

(
n∑

i=1

32

n2
i

)
+

(
n∑

i=1

16

n2

)

+

(
n∑

i=1

8

n
i

)
−

(
n∑

i=1

8

n

)
+

(
n∑

i=1

3

)]

= lim
n→∞

4

n

[
16

n2

(
n∑

i=1

i2

)
− 32

n2

(
n∑

i=1

i

)
+

16

n2

(
n∑

i=1

1

)

+
8

n

(
n∑

i=1

i

)
− 8

n

(
n∑

i=1

1

)
+ 3

(
n∑

i=1

1

)]

= lim
n→∞

4

n

[
16

n2
· n(n + 1)(2n + 1)

6
− 32

n2
· n(n + 1)

2
+

16

n2
· n

+
8

n
· n(n + 1)

2
− 8

n
· n + 3 · n

]
= lim

n→∞

4

n

[
8

3
· (n + 1)(2n + 1)

n
− 16 · n + 1

n
+

16

n

+4(n + 1)− 8 + 3n]

= lim
n→∞

4

n

[
8

3
· 2n2 + 3n + 1

n
− 16 ·

(
1 +

1

n

)
+

16

n

+4n + 4− 8 + 3n]

= lim
n→∞

4

n

[
16n

3
+ 8 +

8

3n
− 16− 16

n
+

16

n
+ 7n− 4

]
= lim

n→∞

4

n

[
37n

3
+

8

3n
− 12

]
= lim

n→∞

[
148

3
+

32

3n2
− 48

n

]
=

148

3
+ 0 + 0 =

148

3
≈ 49.3333 �

Note. The above calculation should be a clue as to why using the Left-Hand Rule, or
similar techniques, is not practical for computing definite integrals precisely.
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4. Compute

∫ 4

0

(
x2 + 2x + 3

)
dx precisely using antiderivatives. [2]

Solution. [Finally, something straightforward and easy! :-)] The Power Rule and the
linearity of the definite integral are our friends here:∫ 4

0

(
x2 + 2x + 3

)
dx =

(
x3

3
+ 2

x2

2
+ 3x

)∣∣∣∣4
0

=

(
43

3
+ 42 + 3 · 4

)
−
(

03

3
+ 02 + 3 · 0

)
=

(
64

3
+ 16 + 12

)
− 0 =

64

3
+ 28 =

64

3
+

84

3
=

148

3
≈ 49.3333 �

6


