Mathematics $\mathbf{1 1 2 0 H}$ - Calculus II: Integrals and Series
 Trent University, Winter 2022

 Final Examination

 Final Examination}

11:00-14:00 on Saturday, 23 April, in Wenjack.
Time: 3 hours.
Brought to you by Стефан Біланюк.
Instructions: Do parts X, Y, and Z, and, if you wish, part W. Show all your work and justify all your answers. If in doubt about something, ask!
Aids: Open book, most any calculator, one head-mounted neural net.
Part X. Do all four (4) of 1-4.

1. Evaluate any four (4) of the integrals a-f. [$20=4 \times 5$ each]
a. $\int_{12}^{14}(x-13)^{6} d x$
b. $\int \frac{1}{z^{2}+3 z+2} d z$
c. $\int_{0}^{1} \frac{y \arctan (y)}{y+y^{3}} d y$
d. $\int u^{3} \sin \left(u^{2}\right) d u$
e. $\int_{0}^{\infty} \frac{1}{(2 v+3)^{2}} d v$
f. $\int \frac{2}{\sqrt{1+4 w^{2}}} d w$
2. Determine whether the series converges in any four (4) of $\mathbf{a}-\mathbf{f}$. [$20=4 \times 5 \mathrm{each}$]
a. $\sum_{n=0}^{\infty} 2^{-n^{2}}$
b. $\sum_{m=1}^{\infty} \frac{1}{\cos (m \pi) \cdot \sqrt{m}}$
c. $\sum_{i=0} \frac{i}{3^{i}}$
d. $\sum_{j=1}^{\infty} \frac{3^{j}}{j}$
e. $\sum_{k=1}^{\infty} \frac{k!}{(k-1)!\cdot k^{2}}$
f. $\sum_{a=0}^{\infty} \frac{\sqrt{a}}{1+a^{2}}$
3. Do any four (4) of a-f. [20 $=4 \times 5$ each]
a. Find the radius and interval of convergence of the power series $\sum_{n=0}^{\infty} \frac{n}{17^{n}} x^{n}$.
b. Determine whether the series $\sum_{n=0}^{\infty} \frac{(-1)^{n}(n!)^{2}}{(2 n)!}$ diverges, converges conditionally, or converges absolutely.
c. Find the volume of the solid obtained by revolving the region between $y=x-4$ and $y=0$, where $0 \leq x \leq 4$, about the x-axis.
d. Use the Left-Hand Rule to compute $\int_{0}^{2} x d x$.
e. Find the sum of the series $\sum_{k=1}^{\infty} \frac{1}{k(k+1)}$.
f. Find the area of the finite region between $y=x$ and $y=x^{3}$.
4. Consider the region between $y=\sin (x)$ and $y=0$, where $0 \leq x \leq \pi$. Solid A is obtained by revolving this region about the x-axis and solid B is obtained by revolving the region about the y-axis. Determine which of A and B has greater volume. [12]

Part Y. Do either one (1) of $\mathbf{5}$ or 6. [14]
5. Consider the curve $y=x^{2}$, where $0 \leq x \leq 2$.
a. Find the area of the surface obtained by revolving the curve about the y-axis. [7]
b. Find the arc-length of the curve. [7]
6. A solid is obtained by revolving the region below $y=x^{2}$ and above $y=-\sqrt{4-x^{2}}$, where $0 \leq x \leq 2$, about the y-axis. Sketch this solid and find its volume. [14]

Part Z. Do either one (1) of $\mathbf{7}$ or 8. [14]
7. Recall that $\cosh (x)=\frac{e^{x}+e^{-x}}{2}$. Find the Taylor series at 0 of $\cosh (x)$
a. using Taylor's formula, [9] and
b. without using Taylor's formula. [5]
8. Consider the power series $\sum_{n=0}^{\infty} \frac{n-2}{n!} x^{n}=-2-x+\frac{x^{3}}{6}+\frac{x^{4}}{12}+\cdots$.
a. Find the radius and interval of convergence of this power series. [8]
b. Figure out what function has this power series as its Taylor series. [6]

$$
[\text { Total }=100]
$$

Part W. Bonus problems! If you feel like it and have the time, do one or both of these.
9. Consider the following answers to a multiple-choice question:
a. The answer is b.
b. The answer is c.
c. The answer is d.
d. The answer is e.
e. None of the above.
Irrespective of the question, what should a student faced with this do? Explain! [1]
10. Write a haiku (or several :-) touching on calculus or mathematics in general. [1]

What is a haiku?

seventeen in three: five and seven and five of syllables in lines

Enjoy your summer!

P.S.: You can keep this question sheet. (Paper airplane, fire starter, the possibilities are endless! :-) The solutions to this exam will be posted to the course archive page at http://euclid.trentu.ca/math/sb/1120H/ in late April or early May.

