Mathematics 1120 H - Calculus II: Integrals and Series
 Trent University, Winter 2022
 Alternate (Take-Home) Final Examination
 06:00-18:00 (EDT) on Saturday, 23 April, via email.

Time: 3 hours.
Brought to you by Стефан Біланюк.
Instructions: Do parts X, Y, and PZ, and, if you wish, part W. Show all your work and justify all your answers. If in doubt about something, ask!
Aids: Open book, any calculator, but you may not look things up beyond what you can find on the MATH 1120 H Blackboard site and the calculus archive page linked to there, nor give or receive any other help.

Part X. Do all four (4) of 1-4.

1. Evaluate any five (5) of the integrals a-f. [$20=5 \times 4$ each]
a. $\int_{0}^{\pi / 4} \frac{\sec (x) \tan (x)}{\sqrt{1+\tan ^{2}(x)}} d x$
b. $\int \frac{2}{\sqrt{4-z^{2}}} d z$
c. $\int_{0}^{1} \frac{2+\arctan (y)}{1+y^{2}} d y$
d. $\int \sin ^{2}(u) \cos ^{3}(u) d u$
e. $\int_{0}^{\infty} v e^{-v^{2}} d v$
f. $\int \frac{w}{\sqrt{4+w^{2}}} d w$
2. Determine whether the series converges in any five (5) of a-f. [20 $=5 \times 4$ each]
a. $\sum_{n=1}^{\infty} \frac{[\ln (n)]^{2}}{n}$
b. $\sum_{m=0}^{\infty} \frac{\sin (m)}{m^{2}+2 m+1}$
c. $\sum_{i=1} \frac{(-1)^{i}}{i \sqrt{i+1}}$
d. $\sum_{j=1}^{\infty} \frac{2^{j}}{j^{2}}$
e. $\sum_{a=0}^{\infty} \frac{\sqrt{a}}{1+\sqrt{a}+a+a \sqrt{a}}$
f. $\sum_{k=1}^{\infty} \frac{(-1)^{k}(2 k)!}{(2 k+1)!}$
3. Do any five (5) of a-f. [$20=5 \times 4$ each]
a. Find the Taylor series at 0 of $p(x)=(x+1)^{3}$ and find its radius of convergence.
b. Determine whether the series $\sum_{n=0}^{\infty} \frac{(-1)^{n} 3^{2 n}}{e^{n}}$ diverges, converges conditionally, or converges absolutely.
c. Find the volume of the solid obtained by revolving the region below $y=4$ and above $y=x^{2}$, where $0 \leq x \leq 2$, about the y-axis.
d. Use the Left-Hand Rule to compute $\int_{0}^{1}(x+1) d x$.
e. Find the sum of the series $\sum_{k=1}^{\infty} \frac{(-2)^{n}}{3^{n+1}}$.
f. Find the area of the finite region between $y=1$ and $y=x^{4}$.
4. Consider the region between $y=x^{2}$ and $y=0$, where $0 \leq x \leq \pi$. Solid A is obtained by revolving this region about the line $x=0$ and solid B is obtained by revolving the region about the line $y=1$. Determine which of A and B has greater volume. [12]

Part Y. Do either one (1) of 5 and 6. [14]
5. Consider the region between $y=\sqrt{1-\frac{x^{2}}{9}}$ and $y=0$, where $-3 \leq x \leq 3$.
a. Find the area of this region. [7]
b. Find the volume of the solid obtained by revolving the region about $y=0$. [7]
6. Sketch the surface obtained by revolving the curve $y=\sin (x)$, for $\pi \leq x \leq 2 \pi$, about the x-axis and find its area. [14]

Part Z. Do either one (1) of $\mathbf{7}$ or 8. [14]
7. Find the Taylor series at 0 of $\arctan (x)$
a. using Taylor's formula, [9] and
b. without using Taylor's formula. [5]
8. Consider the power series $\sum_{n=0}^{\infty}(-1)^{n}(2 n+1) x^{2 n}=1-3 x^{2}+5 x^{4}-7 x^{6}+\cdots$.
a. Find the radius and interval of convergence of this power series. [8]
b. Figure out what function has this power series as its Taylor series. [6]

$$
[\text { Total }=100]
$$

Part W. Bonus problems! If you feel like it and have the time, do one or both of these.
9. Consider the following answers to a multiple-choice question:
a. The answer is b.
b. The answer is c.
c. The answer is d.
d. The answer is e.
e. None of the above.

Irrespective of the question, what should a student faced with this do? Explain! [1]
10. Write a haiku (or several :-) touching on calculus or mathematics in general. [1]

What is a haiku?

seventeen in three: five and seven and five of syllables in lines

Enjoy your summer!
P.S.: You can keep this question sheet. (Paper airplane, fire starter, the possibilities are endless! :-) The solutions to this exam will be posted to the course archive page at http://euclid.trentu.ca/math/sb/1120H/ in late April or early May.

