Taylor Series $I V_{\text {Tricks and Tips }}$
Basic Idea:

1) if a power series is equal to a function, then that power series is it's taylor series

$$
e x: \frac{1}{1-x}=1+x+x^{2}+x^{3}+000
$$

2) if we do unto the Taylor series as we do to the function, the new series is the taylor series of the new function

$$
\begin{aligned}
& \text { ex: } \int \frac{1}{1-x} d x=\ln (1-x) \\
& \int\left(1+x+x^{2}+x^{3}\right) d x \\
& =c+x+\frac{x^{2}}{2}+\frac{x^{3}}{3} \text { \& then } c=0 \text { by plugging in } x=0 \text { on both sides }
\end{aligned}
$$

ex: Say we want the Taylor Series of $f(x)=\frac{1}{(1-x)^{2}}$

$$
\begin{aligned}
f(x)=\frac{1}{(1-x)^{2}=}= & {\left[\frac{1}{1-x}\right]^{2} } \\
= & {\left[1+x+x^{2}+x^{3}+x^{4}+000\right]^{2} } \\
= & {\left[1+x+x^{2}+x^{3}+x^{4} t_{0000}\right]\left[1+x+x^{2}+x^{3}+x^{4} t_{0000}\right] } \\
= & 1+x+x^{2}+x^{3}+x^{4}+000 \\
& +x+x^{2}+x^{3}+x^{4}+000 \\
& +x^{2}+x^{3}+x^{4}+t_{000} \\
& \quad+x^{3}+x^{4}+000 \\
& \quad+000
\end{aligned}
$$

Another way:

$$
\frac{d}{d x}\left(\frac{1}{1-x}\right)=\frac{d}{d x}(1-x)^{-1}=(-1)^{\prime}(1-x)^{-2} \cdot(-1)=\frac{1}{(1-x)^{2}}=f(x)
$$

$$
\text { so } \begin{aligned}
f(x)=\frac{d}{d x}\left(\frac{1}{1-x}\right) & =\frac{d}{d x}\left(1+x+x^{2}+x^{3}+000\right) \\
& =\left(0+1+2 x+3 x^{2}+4 x^{3}+\infty 00\right)=\sum_{n=0}^{\infty}(n+1) x^{n}
\end{aligned}
$$

ex: $g(x)=\frac{e^{x}-1}{x}$, Find the taylor series of $g(x)$
We know that $e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+000=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$
so

$$
\begin{aligned}
g(x) & =\frac{\left(1+x+\frac{x^{2}}{2}+\frac{x^{2}}{3!}+000\right)-1}{x} \\
& =\left(1+\frac{x}{2}+\frac{x^{2}}{2!}+\frac{x^{3}}{4!}++00\right) \\
& =\sum_{k=0}^{\infty} \frac{x^{k}}{(k+1)!}
\end{aligned}
$$

ex: Find the sum of $\sum_{n=1}^{\infty} \frac{x^{n}}{n(n+1)}$ Tie $f(x)$ equal to this series]
We have stuff related to the exponent in the denominator... may be we did Cor someone did) some integration.

$$
\begin{aligned}
& \int x^{n} d x=\frac{x^{n+1}}{(n+1)} \text { or } \int x^{n-1} d x=\frac{x^{n}}{n} \\
& \int \frac{1}{1-x} d x=-\ln (1-x) \\
& =\int\left(1+x+x^{2}+x^{3}+000\right) d x=C+x+\frac{x^{2}}{2}+\frac{x^{3}}{3}+\infty \quad \text { plug in } x=0 \text { and get } c=0
\end{aligned}
$$

$$
\text { so }-\ln (1-x)
$$

$=x+\frac{x^{2}}{2}+\frac{x^{3}}{3}+000=\sum_{n=0}^{\infty} \frac{x^{n}}{n} \rightarrow$ To get those $n+1$'s in the denominators, integrate again

$$
\begin{aligned}
\int\left(\sum_{n=0}^{\infty} \frac{x^{n}}{n}\right) d x & =\sum_{n=0}^{\infty} \int \frac{x^{n}}{n} d x \\
& =K+\sum_{n=0}^{\infty} \frac{x^{n+1}}{(n-1) n}
\end{aligned}
$$

$$
\begin{aligned}
& =k+x \sum_{n=0}^{\infty} \frac{x^{n}}{(n-1)} \\
& \int-\ln (1-x) d x \quad u=1-x \quad d u=-1 d x \\
= & \int \ln (u) d u \quad=\int(1)(\ln (u)) d u \text { S }^{2} P a r t s: \quad s=\ln (u) \quad t^{\prime}=1 \\
= & u \cdot \ln (u)-\int \frac{1}{u} \cdot(x d u \\
= & u \ln (u)-u+J \quad s^{\prime}=\frac{1}{u} \quad t=u \\
= & (1-x) \ln (1-x)-(1-x)+J \\
= & (1-x) \ln (1-x)+x-1+J
\end{aligned}
$$

So we have

$$
\begin{aligned}
& (1-x) \ln (1-x)+x-1+J=K+x \sum_{n=0}^{\infty} \frac{x^{n}}{(n+1)} \quad L=J-K \\
= & (1-x) \ln (1-x)+x-1+L=x \sum_{n=0}^{\infty} \frac{x^{n}}{(n+1)} \rightarrow p \log \text { in } x=0, \text { solve for constant } \\
& (1-0) \ln (1-0)+0-1+L=0 \sum_{n=0}^{\infty} \frac{0^{n}}{n(n+1)} \\
& -1+L=0 \\
& L=1
\end{aligned}
$$

Thus

$$
\begin{aligned}
& =(1-x) \ln (1-x)+x-1+1=x \sum_{n=0}^{\infty} \frac{x^{n}}{n(n+1)} \\
& =(1-x) \ln (1-x)+x=x \sum_{n=0}^{\infty} \frac{x^{n}}{n(n+1)} \\
& \text { so } \sum_{n=0}^{\infty} \frac{x^{n}}{\ln (n+1)}=\frac{(1-x) \ln (1-x)+x}{x}=\left(\frac{1}{x}-1\right) \ln (1-x)+1
\end{aligned}
$$

Not on exam!

$$
\left.\sum_{n=0}^{\infty} \frac{x^{n}}{n^{2}}=f(x) \text { \& find } f(x)\right]
$$

exam level example: $\sum_{n=0}^{\infty} \frac{2^{n+2}}{n!}=$?
Find $g(x)$
where $g(x)$ is
where $g(x)$ is the sum of a series giventhe one above for a suitable sum

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{x^{n+2}}{n!} \stackrel{2}{=} g(x)=g(2) \\
& \begin{aligned}
g(x) & =\sum_{n=0}^{\infty} \frac{x^{n+2}}{n!} \\
& =x^{2} \sum_{n=0}^{\infty} \frac{x^{n}}{n!} \\
& =e^{x} x^{2}
\end{aligned} \text { So } \sum_{n=0}^{\infty} \frac{2^{n+2}}{n!}=g(2)=2^{2} e^{2}=(2 e)^{2}=4 e^{2}
\end{aligned}
$$

