Tay for Series III
The remainder term of a Taylor series
S(x) The taylor series at a is
$$\frac{\pi}{2\pi} \frac{\int \frac{\pi}{2\pi} (x-a)^n}{n!} (x-a)^n$$

Tr (x) = $\frac{\pi}{2\pi} \frac{\int \frac{\pi}{2\pi} (x-a)^n}{n!} = \frac{\pi}{2\pi} (x-a)^n + \frac{\pi}{2\pi} (x-a)^{n+1}$
the nⁿ remainder term in this situation $R_n(x) + \frac{\pi}{2\pi} (x-a)^{n+1}$
for some "t" between "a" and "x" (Strictly in between)
Cheap example: $e^x = \frac{\pi}{2\pi} \frac{x^n}{n!}$ for all x
 $\lim_{n \to \infty} [e^x - T_n(x)] = 0$
So it's enough to show that
 $\lim_{n \to \infty} [e^x - T_n(x)] = 0$
 $\lim_{n \to \infty} [e^x + \frac{\pi}{2\pi} (x-a)^{n+1} +$

We'll use this technology to show that e is irrational

Suppose, for the sake of arrownent the e=
$$\frac{a}{b}$$
 for some positive integers as b
[Assume "e" is achally rational]
 $e=e' = \frac{a}{b} \frac{1}{b!} = \frac{a}{b} \frac{1}{b!}$
 $= T_n(l) + R_n(l)$ for all n
 $= (1+\frac{1}{l!}+\frac{1}{b!}+\dots+\frac{1}{h!}) + \frac{e^+}{(n+1)!} + \frac{1}{2!} + \frac{1}{(n+1)!} + \frac{1}{(n+1)!} + \frac{1}{(n+1)!} + \frac{1}{n!} +$