

 $\sum_{n=2}^{\infty} \frac{1}{\ln(n^2)} = \sum_{n=2}^{\infty} \frac{1}{2\ln(n)} = \frac{1}{2} \sum_{n=2}^{\infty} \frac{1}{\ln(n)}$ In(n) < n for all n≥1 $\Rightarrow \frac{1}{\ln(n)} \Rightarrow \frac{1}{n} - \dots$ but $\sum_{n=2}^{\infty} \frac{1}{n}$ diverges by the p-test since $p \le 1$ so $\sum_{n=2}^{\infty} \frac{1}{\ln(n)}$ diverges by the Comparason test