Series IV Plan: finish 23, do 2.5 & some extra, go back & clo 2.4 $Does \sum_{n=1}^{\infty} \frac{1}{n^{5}}$ Converge or not? Try the integral test $\int_{\frac{\pi}{2}}^{\infty} dx$ $= \lim_{b \to \infty} \int_{-\frac{1}{X^{\sqrt{2}}}}^{b} dx$ - lim 1 x-12 dx $= \lim_{b \to \infty} \left[\frac{X^{-\sqrt{2}+1}}{-\sqrt{2}+1} \right]^{b}$ $= \lim_{b \to \infty} \left[\frac{b^{-\sqrt{2}+1}}{-\sqrt{2}+1} - \frac{1^{-\sqrt{2}+1}}{-\sqrt{2}+1} \right]$ $= \lim_{b \to \infty} \left(\frac{1}{1 - J_2} \cdot \frac{1}{b^{J_2}} + \frac{1}{J_2^2 - 1} \right) = \frac{1}{J_2^2 - 1} \quad \therefore \text{ the Series Converges}$ This worked (in the end) because $\sqrt{2} \approx 1.4... > 1$ P-test: $\sum_{n=1}^{\infty} \frac{1}{n^{p}} \text{ converges if } p>1 \text{ and diverges if } p=1$ Proof: throw the integral test at it now Generalized p-test $\sum_{n=1}^{\infty} \frac{a_n n^k + \dots + a_n n + a_n}{b_n n^2 + \dots + b_n n + b_n}$ Converges if p = l - K > 1 and diverges if $p = l - K \le 1$

2.5~ (Basic Comparison test) Suppose {an3 and {bn3 are segnences of positive terms. If O<an≤bn past some point, then... (1) if $\sum_{n=0}^{\infty}$ by Converge, so dose $\sum_{n=0}^{\infty}$ an 12) if Žan diverges, so dose Žbn Ex: Does $\overset{\infty}{\underset{n=0}{\Sigma}} \frac{1}{n^2+n+3}$ Converge or not Note that $\frac{1}{n^2+n+3} < \frac{1}{n^2}$ for $n \ge 1$ because $n^2 + n + 3 > n^2$ Since $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges by the p-test [as p=2>1] it follows by the basic comparison test that $\overset{\circ}{\underset{n=0}{\Sigma}} \frac{1}{n^2+n+3}$ converges too. Ex: Does $\stackrel{\circ}{\underset{n=0}{\overset{\circ}{\vdash}}} \frac{1}{n^2 - n + 3}$ Converge? $\frac{1}{n^2 - n + 3} < \frac{1}{n^2}$ but $n^2 - n + 3 < n^2$ for n > 3What do we compare $\frac{2}{n} \frac{1}{n^2 - n + 3}$ to if we want to show it converges? $\frac{1}{n^{2}-n+3} < \frac{2}{n^{2}} = \frac{1}{n^{2}/2}$ past some point $\frac{n^{2}}{2} > n-3$ (namely n23) but then $h^2 - \frac{n^2}{2} < n^2 - (n-3) = n^2 - n + 3$ <u>h</u>² so past n33, 2 We have $\frac{1}{n^2 - n + 3} < \frac{1}{n^2 / 2} = \frac{2}{n^2}$ Since $\sum_{n=1}^{\infty} \frac{2}{n^2} = 2 \sum_{n=1}^{\infty} \frac{1}{n^2}$ converges so does $\sum_{n=1}^{\infty} \frac{1}{n^2 - n + 3}$ by the comparison test

There's a better way: The limit Comparison test Suppose Ean 38 Ebn 3 are (past some point) Sequences of positive terms Then, if $\lim_{n \to \infty} \frac{a_n}{b_n} = C > 0$ then $\sum_{n=0}^{\infty} a_n = 0$ do the diverges or both converges If c=o then if Ean diverges so does E bn, and if Ebn Converges so does Eand ITT c= 00 then if $\tilde{\xi}$ as converges then so does $\tilde{\xi}$ by, and if Ebn diverges so does Eand Ex: $\sum_{n=0}^{\infty} \frac{1}{n^2 - n + 3}$ look at the denominator terms in the numerator, 1, 6 the denominator, n^2 compare $\frac{1}{n^2 - n + 3}$ to $\frac{1}{n^2}$ $\lim_{n \to \infty} \frac{n^2 - n + 3}{\frac{1}{n^2}}$ - lim 1 - noo 1/2-n+3) - lim 1 - n > = 1 1 - h + hz = 1 = 1 > 01 - 0 + 6So $\overset{\sim}{\underset{n=0}{\overset{}}} \frac{1}{n^2 - n + 3}$ Converges (or not) exatly as $\frac{2}{n_{row}} \frac{1}{n^2}$ does but $\frac{2}{n_{row}} \frac{1}{n^2}$ converges by the