Sequences & Series (Ch. 11 in the textbook)

A sequences is a list of real numbers indexed by the non-negative integers Index: 4 2 3 0 n In this case, $a_n = \frac{1}{2^n} = \frac{1}{7}$ 1 1 1 1 000 ł **Q**n Dose the sequence have a limit? Yes, it's Zero. Definition: A sequence, {an}, has limits, L (ex: "Limit an = L") means~ for every E>O you can find an N>O, for all n≥N, lan-Ll<E Given on E>O, we'll reverse-engineer the necessary N from $\lim_{n \to \infty} \frac{1}{7^n} = 0$ $\frac{1}{2^n} - 0 < \varepsilon$ $\frac{1}{2^{n}} - 0 < \varepsilon$ =) 1/2" < E =>=>=>=>=<E => |<E(2") $\Rightarrow \frac{1}{\epsilon} < 2^n$ =>log2(€)<n If you now let N be any integer ≥ logz(±), then n>N≥log2(\$) so <u><u>+</u><2ⁿ</u> so 1 < E(2ⁿ) 50 Zn < E as required to have $\lim_{n \to \infty} \frac{1}{2^n} = 0$ $\frac{1}{2^n} - 0 < \varepsilon$

Let's try finding the limit of

$$\Rightarrow \lim_{h \to \infty} \frac{3^{n} + 4}{3^{n-1} + 3} \cdot \frac{3}{2}$$

$$\frac{3^{n}}{3^{n}} + \frac{4}{3^{n}}$$

$$\frac{1}{3^{n}} + \frac{3}{3^{n}}$$

$$\frac{3^{n-1}}{3^{n}} + \frac{3}{3^{n}}$$

$$\Rightarrow \lim_{h \to \infty} \frac{1}{1} + \frac{1}{3n}$$

$$\Rightarrow \frac{1}{1} + \frac{1}{2n} - 72erco$$

4 7000

$$= \lim_{h \to \infty} \frac{1+0}{\frac{1}{2}+0} = \frac{1}{3} = 3$$

Limits with a discreate variable (like "n") instead of a continnous variable like x, obey the same rules except where continunity is nessasary.

We can often work around this using the following trick:

Suppose An=fln) where flx) is continuous (differentiable, etc)

Then we can explait the fact in this case lim an = lim f(n) = lim f(x) provided that last limit exists

bad example: An = Sin(nTr) =0

for all "n" so lim an=0

on the other hand lim Sin(TIX) = ?

This doesn't exist

an	$r = \frac{3^{n} + 4}{3^{n-1} + 3^{n-1}}$											
	3 ⁿ⁻¹ + (3										
fry	() = 3 [×] + 4 3 ^{×-1} + (
VCA	2×-1, 9	2										
	J Ŧ,											
- I	28							_				
lim	$\frac{3^{x}+4}{3^{x-1}+3}$	_										
X-708	3**+3											
lim	3 [×] + 4	30										
X->00	$\frac{3^{x}+4}{3^{x-1}+3}$	->00										

<u> </u>		- 1/114		· D. I				_				
20 W	e Can us	eina	pital	s ru	e							
<u> </u>	d 2x . 1	A										
lim	$\frac{d}{dx}\frac{3^{x}+1}{3^{x}-1}$											
~~~0	<del>م</del> َّ (۲) <del>م</del>	5										
lim	<u>let3)·3×</u> Int3)·3×	+0										
X->00	1.3×	1+0										
<b>I</b> .	n 3 = 3											
	りしてし											
	to or		l ex	ampl	e							
Back	to or	gena				0 2	2					
Back	to or					0 3	2					
Back	to or	gena				••• =	2					
Back 1+	$\frac{1}{2} + \frac{1}{4}$	gena - <del>1</del> + 1	5 + 0	00 + <u>1</u> Z		0 =	2					
Back	$\frac{1}{2} + \frac{1}{4}$	gena - <del>1</del> + 1		00 + <u>1</u> Z		· · · · ·	2					
Back 1+	$\frac{1}{2} + \frac{1}{4}$	gena - <del>1</del> + 1	5 + 0	00 + <u>1</u> Z		0 =	2					
Back 1+	$\frac{1}{2} + \frac{1}{4}$	gena - <del>1</del> + 1	5 + 0	00 + <u>1</u> Z		, o =	2					
Back 1+	$\frac{1}{2} + \frac{1}{4}$	gena - <del>1</del> + 1	5 + 0	00 + <u>1</u> Z			2					
Back 1+	$\frac{1}{2} + \frac{1}{4}$	gena - <del>1</del> + 1	5 + 0	00 + <u>1</u> Z			2					
Back 1+	$\frac{1}{2} + \frac{1}{4}$	gena - <del>1</del> + 1	5 + 0	00 + <u>1</u> Z			2					
Back 1+	$\frac{1}{2} + \frac{1}{4}$	gena - <del>1</del> + 1	5 + 0	00 + <u>1</u> Z			2					
Back 1+	$\frac{1}{2} + \frac{1}{4}$	gena - <del>1</del> + 1	5 + 0	00 + <u>1</u> Z			2					
Back 1+	$\frac{1}{2} + \frac{1}{4}$	gena - <del>1</del> + 1	5 + 0	00 + <u>1</u> Z								
Back 1+	$\frac{1}{2} + \frac{1}{4}$	gena - <del>1</del> + 1	5 + 0	00 + <u>1</u> Z								
Back 1+	$\frac{1}{2} + \frac{1}{4}$	gena - <del>1</del> + 1	5 + 0	00 + <u>1</u> Z								
Back 1+	$\frac{1}{2} + \frac{1}{4}$	gena - <del>1</del> + 1	5 + 0	00 + <u>1</u> Z								
Back 1+	$\frac{1}{2} + \frac{1}{4}$	gena - <del>1</del> + 1	5 + 0	00 + <u>1</u> Z								
Back 1+	$\frac{1}{2} + \frac{1}{4}$	gena - <del>1</del> + 1	5 + 0	00 + <u>1</u> Z								
Back 1+	$\frac{1}{2} + \frac{1}{4}$	gena - <del>1</del> + 1	5 + 0	00 + <u>1</u> Z								
Back 1+	$\frac{1}{2} + \frac{1}{4}$	gena - <del>1</del> + 1	5 + 0	00 + <u>1</u> Z								
Back 1+	$\frac{1}{2} + \frac{1}{4}$	gena - <del>1</del> + 1	5 + 0	00 + <u>1</u> Z								
Back 1+	$\frac{1}{2} + \frac{1}{4}$	gena - <del>1</del> + 1	5 + 0	00 + <u>1</u> Z								