Sequences \& Series
(Ch. II in the textbook)

A sequences is a list of real numbers indexed by the non-negative integers
$\begin{array}{cccccc}\text { Index: } \\ n & 0 & 1 & 2 & 3 & 4000\end{array}$
$\begin{array}{lllllll}a_{n} & 1 & \frac{1}{2} & \frac{1}{4} & \frac{1}{8} & \frac{1}{16} & 000\end{array}$
In this case, $a_{n}=\frac{1}{2^{n}}=\left(\frac{1}{2}\right)^{n}$

Dose the sequence have a limit? Yes, it's zero.
Definition: A sequence, $\left\{a_{n}\right\}$, has limits, $L \quad\left(e^{\text {ex: "Limit }} a_{n \rightarrow \infty}=L "\right)$ means ~ for every $\varepsilon>0$ you can find an $N>0$. for all $n \geqslant N,\left|a_{n}-L\right|<\varepsilon$
$\operatorname{limit}_{n \rightarrow \infty} \frac{1}{2^{n}}=0 \quad$ Given on $\varepsilon>0$, weill reverse-engineer the necessary N from $\left|\frac{1}{2^{n}}-0\right|<\varepsilon$

$$
\begin{aligned}
& \left|\frac{1}{2^{n}}-0\right|<\varepsilon \\
\Rightarrow & \left|\frac{1}{2^{n}}\right|<\varepsilon \\
\Rightarrow & \frac{1}{2^{n}}<\varepsilon \\
\Rightarrow & \mid<\varepsilon\left(2^{n}\right) \\
\Rightarrow & \frac{1}{\varepsilon}<2^{n}
\end{aligned}
$$

$\Rightarrow \log _{2}\left(\frac{1}{\varepsilon}\right)<n \quad$ If you now let N be any integer $\geqslant \log _{2}\left(\frac{1}{\varepsilon}\right)$,
then $n>N \geq \log _{2}\left(\frac{1}{3}\right)$
so $\frac{1}{\varepsilon}<2^{n}$
so $1<\varepsilon\left(2^{n}\right)$
so $\frac{1}{2^{n}}<\varepsilon$
so $\left|\frac{1}{2^{n}}-0\right|<\varepsilon$ as required to have $\lim _{n \rightarrow \infty} \frac{1}{2^{n}}=0$

Let's try finding the limit of

$$
\begin{aligned}
& a_{n}=\frac{3^{n}+4}{3^{n-1}+3} \quad \text { So how do we find } \lim _{n \rightarrow \infty} \frac{3^{n}+4}{3^{n-1}+3} \text { ? } \\
& \Rightarrow \lim _{n \rightarrow \infty} \frac{3^{n}+4}{3^{n-1}+3} \cdot \frac{\frac{1}{3^{n}}}{\frac{1}{3^{n}}} \\
& \Rightarrow \lim _{n \rightarrow \infty} \frac{\frac{3^{n}}{3^{n}}+\frac{4}{3^{n}}}{\frac{3^{n-1}}{3^{n}}+\frac{3}{3^{n}}} \\
& \Rightarrow \lim _{n \rightarrow \infty} \frac{1+\frac{4}{3^{n}} \rightarrow \text { zero }}{\frac{1}{3}+\frac{1}{3^{n-1}}} \rightarrow \text { zero } \\
& \Rightarrow \lim _{n \rightarrow \infty} \frac{1+0}{\frac{1}{3}+0}=\frac{1}{\frac{1}{3}}=3
\end{aligned}
$$

Limits with a discreate variable (like " n ") instead of a continnous variable like x, obey the same rules except where continunity is nessasary.
We can often work around this using the following trick:
Suppose $a_{n}=f(n)$ where $f(x)$ is continuous (differentiable, etc)
Then we can explait the fact in this case $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} f(n)=\lim _{x \rightarrow \infty} f(x)$ provided that last limit exists
bad example: $\begin{aligned} a_{n} & =\sin (n \pi) \\ & =0\end{aligned}$
for all " n " so $\lim _{n \rightarrow \infty} a_{n}=0$
on the other hand $\lim _{x \rightarrow \infty} \operatorname{Sin}(\pi x)=$?
This doesn't exist

$$
\begin{aligned}
& a_{n}=\frac{3^{n}+4}{3^{n-1}+3} \\
& f(x)=\frac{3^{x}+4}{3^{x-1}+3} \\
& \lim _{x \rightarrow \infty} \frac{3^{x}+4}{3^{x-1}+3} \\
& \lim _{x \rightarrow \infty} \frac{3^{x}+4 \rightarrow \infty}{3^{x-1}+3} \rightarrow \infty
\end{aligned}
$$

So we can use l'Hôpital's Rule

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{d}{d x} 3^{x}+4 \\
& \frac{d}{d x} 3^{x-1}+3 \\
& \lim _{x \rightarrow \infty} \frac{\operatorname{los}(3) \cdot \cdot^{x}+5}{\operatorname{los}(3) \cdot 3^{x-1}+0} \\
& \lim _{x \rightarrow \infty} 3=3
\end{aligned}
$$

Back to origenal example

$$
1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+000+\frac{1}{2^{n}}+000=2
$$

