

This looks like (and is) a parabola opening downwards and with its tip at the origin.
-> 1 (iii)
$>\operatorname{plot}\left(-\operatorname{sqrt}\left(1-x^{2}\right), x=-1 . .1\right)$

[This looks vaguely like a parabola, thanks to the distorted scale, but is actually the bottom half of the circle of radius 1 (i.e. the unit circle) centred at the origin.
$>$ with(plots)
[animate, animate3d, animatecurve, arrow, changecoords, complexplot, complexplot3d,
conformal, conformal3d, contourplot, contourplot3d, coordplot, coordplot3d, densityplot, display, dualaxisplot, fieldplot, fieldplot3d, gradplot, gradplot3d, implicitplot, implicitplot3d, inequal, interactive, interactiveparams, intersectplot, listcontplot, listcontplot3d, listdensityplot, listplot, listplot3d, loglogplot, logplot, matrixplot, multiple, odeplot, pareto, plotcompare, pointplot, pointplot3d, polarplot, polygonplot, polygonplot3d, polyhedra_supported, polyhedraplot, rootlocus, semilogplot, setcolors, setoptions, setoptions3d, shadebetween, spacecurve, sparsematrixplot, surfdata, textplot, textplot3d, tubeplot]
[> 2 (i)
$>\operatorname{implicitplot}\left(x^{2}+y^{2}=1, x=-1 . .1, y=-1 . .1\right)$

[This looks like the circle of radius 1 (i.e. the unit circle) centred at the origin.
[> 2 (ii)
$>\operatorname{implicitplot}\left(x^{2} \cdot\left(4 \cdot x^{2}-3\right)^{2}+4 \cdot y^{2} \cdot\left(y^{2}-1\right)=0, x=-5 . .5, y=-5 . .5\right)$

This looks like some kind of closed braid or knot.
[> 2 (iii)
$>\operatorname{implicitplot}\left(x^{2}=y^{2}, x=-1 . .1, y=-1 . .1\right)$

[This looks like the two straight lines $\mathrm{y}=\mathrm{x}$ and $\mathrm{y}=-\mathrm{x}$ between $\mathrm{x}=-1$ and $\mathrm{x}=1$.
[> 3 (i)
$>\operatorname{plot}([\cos (t), \sin (t), t=0 . .2 \cdot \mathrm{Pi}])$

EThis looks like the unit circle centred at the origin.
[> 3 (ii)
$>\operatorname{plot}([\sin (t), \sin (t), t=0 . .2 \cdot \mathrm{Pi}])$

[This is a straight line from $(-1,-1)$ to $(1,1)$.
[> 3 (iii)
$>\operatorname{plot}([\sin (2 \cdot t), \sin (3 \cdot t), t=\mathrm{Pi} . .2 \cdot \mathrm{Pi}])$

EThis curve looks vaguely like a boomerang or an upside-down heart shape.
[> 4 (i)
$>\operatorname{polarplot}(1$, theta $=\mathrm{Pi} . .2 \cdot \mathrm{Pi})$

EThis curve is the bottom half of the circle centred at the origin.
[> 4 (ii)
$>\operatorname{polarplot}($ theta $\cdot \exp ($ theta $)$, theta $=-2 \cdot \mathrm{Pi} . .2 \cdot \mathrm{Pi})$

EThis curve looks like a spiral starting at or near the origin.
[> 4 (iii)
$>\operatorname{polarplot}(2-2 \cdot \sin ($ theta $)$, theta $=0 . .2 \cdot \mathrm{Pi})$

This curve looks vaguely heart - shaped.
[>5.
a. Both 1(i) and 3(ii) are the straight line segment joining the points $(-1,-1)$ and $(1,1)$, and this straight line segment is one of the two line segments crossing at the origin in 2(iii).
b. Both 1(iii) and 4(i) are the bottom half of the unit circle centred at the origin, and the entire circle is the curve in 2(i).

That's it this time around...
[> ...so this is the end.

