Mathematics 1110H - Calculus I: Limits, derivatives, and Integrals
 Trent University, Winter 2021

Solution to Quiz \#9
[Corrected 2021-05-11.]
Tuesday, 23 March.
Show all your work! Simplify where you conveniently can.

1. A hot air balloon rising vertically is tracked by an observer 4 km from the point the balloon lifted off. How fast is the balloon rising at the instant that the observer's line of sight makes an angle of $\frac{\pi}{6} \mathrm{rad}$ with the horizontal if this angle is increasing at a rate of $0.3 \mathrm{rad} / \mathrm{min}$ at this instant? [5]s
Solution. Here's a picture of the setup:

Suppose y is the altitude in kilometres of the balloon above the ground and θ is the angle in radians that the observer's line of sight makes with the horizontal. We are given that the oberver is 4 km from the lift-off point of the balloon and that $\frac{d \theta}{d t}=0.3 \mathrm{rad} / \mathrm{min}$ at the instant that $\theta=\frac{\pi}{6} \mathrm{rad}$. The location of the observer, the lift-off point, and the balloon are the corners of a right triangle, with the right angle at the lift-off point, a base of 4 km , and a height of $y \mathrm{~km} . \theta$ is then the angle the hypotenuse of the triangle (i.e. the observer's line of sight) makes with the base. It follows that $\tan (\theta)=\frac{y}{4}$, so $y=4 \tan (\theta)$ and thus

$$
\frac{d y}{d t}=\frac{d}{d t} 4 \tan (\theta)=4 \cdot\left[\frac{d}{d \theta} \tan (\theta)\right] \cdot \frac{d \theta}{d t}=4 \sec ^{2}(\theta) \frac{d \theta}{d t} .
$$

It follows that at the instant that $\theta=\frac{\pi}{6} \mathrm{rad}$ we have:

$$
\left.\frac{d y}{d t}\right|_{\theta=\pi / 6}=\left.4 \sec ^{2}\left(\frac{\pi}{6}\right) \cdot \frac{d \theta}{d t}\right|_{\theta=\pi / 6}=4\left(\frac{2}{\sqrt{3}}\right)^{2} \cdot 0.3=\frac{16}{3} \cdot 0.3 \approx 1.6
$$

Thus the balloon is rising at a rate of about $1.6 \mathrm{~km} / \mathrm{min}$ at the given instant. (This is not a realistic rate of climb for a real hot air balloon, hopefully. $0.3 \mathrm{~km} / \mathrm{min}$ is already almost certainly unsafe ...)

Note. Just in case, $\sec ^{2}\left(\frac{\pi}{6}\right)=\frac{1}{\cos ^{2}(\pi / 6)}=1 /(\sqrt{3} / 2)^{2}=(2 / \sqrt{3})^{2}$.

