Mathematics $\mathbf{1 1 1 0 H}$ - Calculus I: Limits, derivatives, and Integrals Trent University, Winter 2021
 Solution to Quiz \#8
 Tuesday, 16 March.

Show all your work! Simplify where you conveniently can.

1. A rectangle has its bottom left corner at the origin, its top left corner on the y-axis, its bottom right corner on the x-axis, and its top right corner on the part of the parabola $y=6 x-4 x^{2}$ that is above the x-axis. Find the maximum area of such a rectangle. [5]

Solution. Here is a diagram of the setup:

It's not hard to see that such a rectangle with its top right-hand corner at $(x, y)=$ $\left(x, 6 x-4 x^{2}\right)$ has width $x-0=x$ and height $y-0=y=6 x-4 x^{2}$, so it has area $A(x)=x\left(6 x-4 x^{2}\right)=6 x^{2}-4 x^{3}$. For the domain of possible values of x, observe that the part of $y=6 x-4 x^{2}$ that is above the x-axis is (strictly) between its roots. Since $6 x-4 x^{2}=2 x(3-2 x)=0$ when $x=0$ or $x=1.5$, it follows that $0<x<1.5$, i.e. the relevant domain for x is $(0,1.5)$.

Technically, we ought to take the limit of $A(x)$ as $x \rightarrow 0^{+}$and when $x \rightarrow 1.5^{-}$to figure out what happens at the endpoints of the interval, but since $A(x)$ is defined and continuous at both endpoints (since any polynomial is defined and continuous everywhere) we get away with simply evaluating $A(x)$ at both endpoints: $A(0)=6 \cdot 0^{2}-4 \cdot 0^{3}=0$ and $A(1.5)=6 \cdot 1.5^{2}-4 \cdot 1.5^{3}=6 \cdot 2.25-4 \cdot 3.375=13.5-13.5=0$.

We next look for critical points in the interval $(0,1.5)$.

$$
A^{\prime}(x)=\frac{d}{d x}\left(6 x^{2}-4 x^{3}\right)=12 x-12 x^{2}=12 x(1-x)=0 \Longleftrightarrow x=0 \text { or } x=1
$$

$x=0$ is technically not in the interval $(0,1.5)$, but as it is one of the endpoints, we have already checked it out above. $x=1$ is in the interval $(0,1.5)$, so we check it out too:

$$
A(1)=6 \cdot 1^{2}-4 \cdot 1^{3}=6-4=2
$$

Since $A(1)=2>0=A(0)=A(1.5)$, it follows that the maximum possible area of a rectangle positioned as specified in the problem is 2 .

