Mathematics 1110H - Calculus I: Limits, derivatives, and Integrals Trent University, Winter 2021

Solutions to Quiz \#2

Tuesday, 26 January.
Do both of the following questions. Show all your work!

1. Compute $\lim _{x \rightarrow 4} \frac{x^{2}-x-12}{x^{2}+x-20}$. [2.5]

Solution. Both the numerator and the denominator approach 0 as x approaches 4 , so we seek to simplify them to evaluate the limit. The key is to factor them both:

$$
\lim _{x \rightarrow 4} \frac{x^{2}-x-12}{x^{2}+x-20}=\lim _{x \rightarrow 4} \frac{(x-4)(x+3)}{(x-4)(x+5)}=\lim _{x \rightarrow 4} \frac{x+3}{x+5}=\frac{4+3}{4+5}=\frac{7}{9}
$$

2. Compute $\lim _{x \rightarrow \pi / 4} \frac{1-\sin (2 x)}{\sin (x)-\cos (x)}$. [2.5]

Solution. Again, both the numerator and the denominator approach 0 as x approaches 4, so we seek to simplify them to evaluate the limit. The key is to expand the numerator using the trigonometric identities $\sin (2 x)=2 \sin (x) \cos (x)$ and $\sin ^{2}(x)+\cos ^{2}(x)=1$, and then factor it:

$$
\begin{aligned}
\lim _{x \rightarrow \pi / 4} \frac{1-\sin (2 x)}{\sin (x)-\cos (x)} & =\lim _{x \rightarrow \pi / 4} \frac{\sin ^{2}(x)+\cos ^{2}(x)-2 \sin (x) \cos (x)}{\sin (x)-\cos (x)} \\
& =\lim _{x \rightarrow \pi / 4} \frac{\sin ^{2}(x)-2 \sin (x) \cos (x)+\cos ^{2}(x)}{\sin (x)-\cos (x)} \\
& =\lim _{x \rightarrow \pi / 4} \frac{(\sin (x)-\cos (x))^{2}}{\sin (x)-\cos (x)} \\
& =\lim _{x \rightarrow \pi / 4}(\sin (x)-\cos (x)) \\
& =\sin \left(\frac{\pi}{4}\right)-\cos \left(\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}}=0
\end{aligned}
$$

$$
[\text { Total }=5]
$$

