Mathematics $\mathbf{1 1 1 0 H}$ - Calculus I: Limits, derivatives, and Integrals
 Trent University, Winter 2021
 Quiz \#11
 Tuesday, 6 April.

Show all your work! Simplify where you conveniently can. Compute both of the following integrals.

1. Find the area of the finite region below the line $y=-x+2$ and above the parabola $y=x^{2}$. [2.5]
Solution. Here's a graph of the functions, as drawn by a program called kmplot:

It's easy to tell from the graph that $-2 \leq x \leq 1$ for the region below $y=-x+2$ and above $y=x^{2}$. We can verify this - or figure it out to begin with - by noting that the two curves intersect when

$$
x^{2}=-x+2 \Longleftrightarrow x^{2}+x-2=0 \Longleftrightarrow(x-1)(x+2)=0 \Longleftrightarrow x=1 \text { or } x=-2,
$$

and that $-x+2>x^{2}$ for $-2<x<1$ because $-0+2=2>0=0^{2}$. Since the functions are continuous, we only need to test one point between $x=-2$ and $x=1$, and $x=0$ makes for easy arithmetic. :-) It follows that the area of the region is:

$$
\begin{aligned}
\int_{-2}^{1}(\text { upper }- \text { lower }) d x & =\int_{-2}^{1}\left((-x+2)-x^{2}\right) d x=\int_{-2}^{1}\left(2-x-x^{2}\right) d x \\
& =\left.\left(2 x-\frac{x^{2}}{2}-\frac{x^{3}}{3}\right)\right|_{-2} ^{1} \\
& =\left(2 \cdot 1-\frac{1^{2}}{2}-\frac{1^{3}}{3}\right)-\left(2 \cdot(-2)-\frac{(-2)^{2}}{2}-\frac{(-2)^{3}}{3}\right) \\
& =\left(2-\frac{1}{2}-\frac{1}{3}\right)-\left(-4-\frac{4}{2}+\frac{8}{3}\right)=\frac{7}{6}-\left(-\frac{10}{3}\right) \\
& =\frac{7}{6}+\frac{20}{6}=\frac{27}{6}=\frac{9}{2}=4.5
\end{aligned}
$$

2. Find the area of the region between the graphs of $y=x e^{-x}$ and $y=0$, where $0 \leq x \leq \ln (7) .[2.5]$
Solution. Note that $e^{-x}>0$ for all x, so $x e^{-x} \geq 0$ for $x \geq 0$. It follows that the area of the region is

$$
\begin{aligned}
& \int_{0}^{\ln (7)} \text { (upper - lower) } d x= \int_{0}^{\ln (7)}\left(x e^{-x}-0\right) d x=\int_{0}^{\ln (7)} x e^{-x} d x \\
& \text { We'll use the substitution } w=-x, \text { so } x=-w, \\
& d w=(-1) d x, \text { and } d x=(-1) d w, \text { and change the } \\
& \operatorname{limits} \text { accordingly: } \begin{array}{l}
x \\
w
\end{array} \quad 0 \quad \ln (7) \\
&-\ln (7) \\
&= \int_{0}^{-\ln (7)}(-w) e^{w}(-1) d w=\int_{0}^{-\ln (7)} w e^{w} d w \\
&=-\int_{-\ln (7)}^{0} w e^{w} d w \quad \text { Now we use integration by parts } u=w \text { and } v^{\prime}=e^{w}, \text { so } \\
& u^{\prime}=1 \text { and } v=e^{w} . \\
&=-\left(\left.w e^{w}\right|_{-\ln (7)} ^{0}-\int_{-\ln (7)}^{0} e^{w} d w\right) \\
&=-\left(\left[0 e^{0}\left(-\ln (7) e^{-\ln (7)}\right)\right]-\left.e^{w}\right|_{-\ln (7)} ^{0}\right) \\
&=-\left(\left[0-\left(-\frac{\ln (7)}{\left.\left.\left.e^{\ln (7)}\right)\right]-\left[e^{0}-e^{-\ln (7)}\right]\right)}\right.\right.\right. \\
&=-\left(\frac{\ln (7)}{7}-\left[1-\frac{1}{\left.\left.e^{\ln (7)}\right]\right)=-\left(\frac{\ln (7)}{7}-\left[1-\frac{1}{7}\right]\right)}\right.\right. \\
&=-\left(\frac{\ln (7)}{7}-\frac{6}{7}\right)=-\frac{\ln (7)-6}{7} \\
&= \frac{6-\ln (7)}{7} \approx 0.5792 \quad \square
\end{aligned}
$$

Note. Units? What are units? :-)

