Mathematics $\mathbf{1 1 1 0 H}$ - Calculus I: Limits, derivatives, and Integrals Trent University, Winter 2021

Solutions to Quiz \#1

Tuesday, 19 January.

Do both of the following questions. Show all your work!

1. Use the $\varepsilon-\delta$ definition of limits to verify that $\lim _{x \rightarrow 3}(1-2 x)=-5$. [2.5]

Solution. We need to show that given any $\varepsilon>0$, there is a $\delta>0$ such that if $|x-3|<\delta$, then $|(1-2 x)-(-5)|<\varepsilon$.

Suppose we are given an $\varepsilon>0$. We will reverse-engineer the corresponding δ :

$$
\begin{aligned}
|(1-2 x)-(-5)|<\varepsilon & \Longleftrightarrow|1-2 x+5|<\varepsilon \\
& \Longleftrightarrow|-2 x+6|<\varepsilon \\
& \Longleftrightarrow|-2(x-3)|<\varepsilon \\
& \Longleftrightarrow|-2| \cdot|x-3|<\varepsilon \\
& \Longleftrightarrow 2|x-3|<\varepsilon \\
& \Longleftrightarrow|x-3|<\frac{\varepsilon}{2}
\end{aligned}
$$

Now let $\delta=\frac{\varepsilon}{2}$. Since every step in the above chain is reversible, it follows that if $|x-3|<$ $\delta=\frac{\varepsilon}{2}$, then $|(1-2 x)-(-5)|<\varepsilon$, as required.

Since we can find a suitable $\delta>0$ for any given $\varepsilon>0$, it follows by the $\varepsilon-\delta$ definition of limits that $\lim _{x \rightarrow 3}(1-2 x)=-5$.
2. Use the $\varepsilon-\delta$ definition of limits to verify that $\lim _{x \rightarrow 1}(x-1)^{2}=0$. [2.5]

Solution. We need to show that given any $\varepsilon>0$, there is a $\delta>0$ such that if $|x-1|<\delta$, then $\left|(x-1)^{2}-0\right|<\varepsilon$.

Suppose we are given an $\varepsilon>0$. We will reverse-engineer the corresponding δ :

$$
\begin{aligned}
\left|(x-1)^{2}-0\right|<\varepsilon & \Longleftrightarrow\left|(x-1)^{2}\right|<\varepsilon \\
& \Longleftrightarrow|x-1|^{2}<\varepsilon \\
& \Longleftrightarrow|x-1|=\sqrt{|x-1|^{2}}<\sqrt{\varepsilon}
\end{aligned}
$$

Now let $\delta=\sqrt{\varepsilon}$. Since every step in the above chain is reversible, it follows that if $|x-3|<\delta=\sqrt{\varepsilon}$, then $\left|(x-1)^{2}-0\right|<\varepsilon$, as required.

Since we can find a suitable $\delta>0$ for any given $\varepsilon>0$, it follows by the $\varepsilon-\delta$ definition of limits that $\lim _{x \rightarrow 1}(x-1)^{2}=0$.

Note that this is one of the rare situations where we apply the $\varepsilon-\delta$ definition of limits to verify that the limit of a quadratic function is correct and do not have to play estimation games to find a suitable δ.

