Mathematics 1110H – Calculus I: Limits, derivatives, and Integrals TRENT UNIVERSITY, Winter 2021

Solutions to Quiz #1

Tuesday, 19 January.

Do both of the following questions. Show all your work!

1. Use the $\varepsilon - \delta$ definition of limits to verify that $\lim_{x \to 3} (1 - 2x) = -5$. [2.5]

SOLUTION. We need to show that given any $\varepsilon > 0$, there is a $\delta > 0$ such that if $|x-3| < \delta$, then $|(1-2x) - (-5)| < \varepsilon$.

Suppose we are given an $\varepsilon > 0$. We will reverse-engineer the corresponding δ :

$$\begin{split} |(1-2x) - (-5)| < \varepsilon \iff |1-2x+5| < \varepsilon \\ \iff |-2x+6| < \varepsilon \\ \iff |-2(x-3)| < \varepsilon \\ \iff |-2| \cdot |x-3| < \varepsilon \\ \iff 2|x-3| < \varepsilon \\ \iff |x-3| < \frac{\varepsilon}{2} \end{split}$$

Now let $\delta = \frac{\varepsilon}{2}$. Since every step in the above chain is reversible, it follows that if $|x-3| < \delta = \frac{\varepsilon}{2}$, then $|(1-2x) - (-5)| < \varepsilon$, as required. Since we can find a suitable $\delta > 0$ for any given $\varepsilon > 0$, it follows by the ε - δ definition

Since we can find a suitable $\delta > 0$ for any given $\varepsilon > 0$, it follows by the $\varepsilon - \delta$ definition of limits that $\lim_{x \to 3} (1 - 2x) = -5$. \Box

2. Use the ε - δ definition of limits to verify that $\lim_{x \to 1} (x-1)^2 = 0$. [2.5]

SOLUTION. We need to show that given any $\varepsilon > 0$, there is a $\delta > 0$ such that if $|x-1| < \delta$, then $|(x-1)^2 - 0| < \varepsilon$.

Suppose we are given an $\varepsilon > 0$. We will reverse-engineer the corresponding δ :

$$\begin{split} \left| (x-1)^2 - 0 \right| < \varepsilon \iff \left| (x-1)^2 \right| < \varepsilon \\ \iff |x-1|^2 < \varepsilon \\ \iff |x-1| = \sqrt{|x-1|^2} < \sqrt{\varepsilon} \end{split}$$

Now let $\delta = \sqrt{\varepsilon}$. Since every step in the above chain is reversible, it follows that if $|x-3| < \delta = \sqrt{\varepsilon}$, then $|(x-1)^2 - 0| < \varepsilon$, as required.

Since we can find a suitable $\delta > 0$ for any given $\varepsilon > 0$, it follows by the $\varepsilon - \delta$ definition of limits that $\lim_{x \to 1} (x - 1)^2 = 0$.

Note that this is one of the rare situations where we apply the ε - δ definition of limits to verify that the limit of a quadratic function is correct and do not have to play estimation games to find a suitable δ .