
Mathematics 1110H – Calculus I: Limits, Derivatives, and Integrals
Trent University, Winter 2021

Solutions to the Monstrous Take-Home Final Examination of Horror

Available on Blackboard from 12:00 6:30 a.m. on Monday, 19 April.
Due on Blackboard by 11:59 p.m. on Wednesday, 21 6:30 a.m. on Thursday, 22 April.

Submission: Scans or photos of handwritten work are entirely acceptable so long as they
are legible and in some common format; solutions submitted as a single pdf are strongly
preferred. If submission via Blackboard’s Assignments module fails repeatedly, then (only
as a last resort) email them to the instructor at: sbilaniuk@trentu.ca

Allowed aids: For this exam, you are permitted to use your textbook and all other course
material, from this and any other mathematics course(s) you have taken or are taking now,
but you may not use any other sources or aids, nor give or receive any help, except to ask
the instructor to clarify questions and to use a calculator (any that you like).

Instructions: Do parts X and Y, and, if you wish, part Z. Please show all your work
and justify all your answers. If in doubt about something, ask!

Part Xenomorph. Do all four (4) of 1–4. [Subtotal = 72]

1. Compute
dy

dx
as best you can in any five (5) of a–f. [20 = 5 × 4 each]

a. y =

√
x− 1

x+ 1
b. y =

∫ x2

0

sin(t) dt c. y = arctan
(
e2x
)

d. exy = x e. y = ln
(
x2 − 1

)
f. y =

x2 − 1

x4 − 1

Solutions. a. Power, Chain, and Quotient Rules.

dy

dx
=

d

dx

√
x− 1

x+ 1
=

d

dx

(
x− 1

x+ 1

)1/2

=
1

2

(
x− 1

x+ 1

)−1/2
· d
dx

(
x− 1

x+ 1

)
=

1

2

(
x− 1

x+ 1

)−1/2
·
[
d
dx (x− 1)

]
(x+ 1)− (x− 1)

[
d
dx (x+ 1)

]
(x+ 1)2

=
1

2

(
x+ 1

x− 1

)1/2

· 1 · (x+ 1)− (x− 1) · 1
(x+ 1)2

=
1

2

(
x+ 1

x− 1

)1/2

· x+ 1− x+ 1

(x+ 1)2

=
1

2

(
x+ 1

x− 1

)1/2

· 2

(x+ 1)2
=

1

(x+ 1)3/2(x− 1)1/2
�

b. Fundamental Theorem of Calculus, Chain Rule, and Power Rule.

dy

dx
=

d

dx

∫ x2

0

sin(t) dt = sin
(
x2
)
· d
dx
x2 = sin

(
x2
)
· 2x = 2x sin

(
x2
)

�
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b. Integration, Chain Rule, and Power Rule.

dy

dx
=

d

dx

∫ x2

0

sin(t) dt =
d

dx

(
− cos (t)|x

2

0

)
=

d

dx

([
− cos

(
x2
)]
− [− cos(0)]

)
=

d

dx

(
− cos

(
x2
)
− [−1]

)
=

d

dx

(
1− cos

(
x2
))

=

[
d

dx
1

]
−
[
d

dx
cos
(
x2
)]

= 0−
[
− sin

(
x2
)
· d
dx
x2
]

= sin
(
x2
)
· 2x = 2x sin

(
x2
)

�

c. Chain Rule, and lots of it.

dy

dx
=

d

dx
arctan

(
e2x
)

=
1

1 + (e2x)
2 ·

d

dx
e2x =

1

1 + e4x
· e2x · d

dx
(2x)

=
1

1 + e4x
· e2x · 2 =

2e2x

1 + e4x
�

d. Implicit differentiation, Chain and Product Rules, and algebra.

exy = x =⇒ d

dx
exy =

d

dx
x =⇒ exy · d

dx
(xy) = 1 =⇒ exy ·

([
d

dx
x

]
y + x

[
d

dx
y

])
= 1

=⇒ 1 · y + x · dy
dx

= e−xy =⇒ x · dy
dx

= e−xy − y =⇒ dy

dx
=
e−xy − y

x
�

d. Algebra and Quotient Rule.

exy = x =⇒ xy = ln(x) =⇒ y =
ln(x)

x

=⇒ dy

dx
=

d

dx

(
ln(x)

x

)
=

[
d
dx ln(x)

]
x− ln(x)

[
d
dxx
]

x2

=
1
x · x− ln(x) · 1

x2
=

1− ln(x)

x2
�

e. Chain Rule and Power Rule.

dy

dx
=

d

dx
ln
(
x2 − 1

)
=

1

x2 − 1
· d
dx

(
x2 − 1

)
=

1

x2 − 1
· (2x− 0) =

2x

x2 − 1
�

f. Quotient Rule, Power Rule, and a little algebra.

dy

dx
=

d

dx

(
x2 − 1

x4 − 1

)
=

[
d
dx

(
x2 − 1

)] (
x4 − 1

)
−
(
x2 − 1

) [
d
dx

(
x4 − 1

)]
(x4 − 1)

2

=
2x
(
x4 − 1

)
−
(
x2 − 1

)
· 4x3

(x4 − 1)
4 =

2x5 − 2x− 4x5 + 4x3

(x4 − 1)
2 =

−2x5 + 4x3 − 2x

(x4 − 1)
2

=
−2x

(
x4 − 2x2 + 1

)
(x4 − 1)

2 =
−2x

(
x2 − 1

)2
(x2 − 1)

2
(x2 + 1)

2 =
−2x

(x2 + 1)
2 �
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f. Algebra, Power Rule, and Chain Rule.

dy

dx
=

d

dx

(
x2 − 1

x4 − 1

)
=

d

dx

(
x2 − 1

(x2 − 1) (x2 + 1)

)
=

d

dx

(
1

x2 + 1

)
=

d

dx

(
x2 + 1

)−1
= (−1)

(
x2 + 1

)−2 · d
dx

(
x2 + 1

)
=

−1

(x2 + 1)
2 · (2x+ 0) =

−2x

(x2 + 1)
2 �

2. Evaluate any five (5) of the integrals a–f. [20 = 5 × 4 each]

a.

∫ (
ueu+1 + 2u+2

)
du b.

∫ 2

0

v2 + 39v − 82

v − 2
dv c.

∫
tan(w)

1− sin2(w)
dw

d.

∫ π/2

0

sin(2x)√
1 + sin2(x)

dx e.

∫
y arctan

(
y2
)
dy f.

∫ 2

1

z40ln (z) dz

Solutions. a. A little algebra, integration by parts, and substitutiom.∫ (
ueu+1 + 2u+2

)
du =

∫
(eueu + 4 · 2u) du = e

∫
ueu du+ 4

∫
2u du

= e

∫
ueu du+ 4

∫
eln(2)·u du

The first part we will do using integration by parts, with u = u (Of course! :-) and v′ = eu,
so u′ = 1 and v = eu, and the second part we will do using substitution, with w = ln(u) ·u,

so dw = ln(2) du and du =
1

ln(2)
dw. (For the second part, one could also just invoke the

appropriate integral formula, but I can’t be bothered to remember it . . . ) Then:∫ (
ueu+1 + 2u+2

)
du = e

∫
ueu du+ 4

∫
eln(2)·u du

= e

[
ueu −

∫
eu du

]
+ 4

∫
ew · 1

ln(2)
dw

= e [ueu − eu] +
4

ln(2)
ew + C = ueu+1 − eu+1 +

4eln(2)·u

ln(2)
+ C

= (u− 1)eu+1 +
4 · 2u

ln(2)
+ C = (u− 1)eu+1 +

2u+2

ln(2)
+ C �

b. A little algebra and the power rule.∫ 2

0

v2 + 39v − 82

v − 2
dv =

∫ 2

0

(v − 2)(v + 41)

v − 2
dv =

∫ 2

0

(v + 41) dv

=

(
v2

2
+ 41v

)∣∣∣∣2
0

=

(
22

2
+ 41 · 2

)
−
(

02

2
+ 41 · 0

)
= (2 + 82)− 0 = 84 �
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c. A little algebra with trig identities, substitution, and the Power Rule.

∫
tan(w)

1− sin2(w)
dw =

∫ sin(w)
cos(w)

cos2(w)
dw =

∫
sin(w)

cos3(w)
dw

Substitute t = cos(w),
so dt = − sin(w) dw
and sin(w) dw = (−1) dt.

=

∫
1

t3
(−1) dt = −

∫
t−3 dt = − t

−2

−2
+ C =

1

2t2
+ C

=
1

2 cos2(w)
+ C =

1

2
sec2(w) + C �

d. A little algebra with trig identities, substitution, and the Power Rule.

∫ π/2

0

sin(2x)√
1 + sin2(x)

dx =

∫ π/2

0

2 sin(x) cos(x)√
1 + sin2(x)

dx

Substitute u = 1 + sin2(x),
so du = 2 sin(x) cos(x) dx

and
x 0 π/2
u 1 2

.

=

∫ 2

1

1√
u
du =

∫ 2

1

u−1/2 du =
u1/2

1/2

∣∣∣∣2
1

= 2
√
u
∣∣2
1

= 2
√

2− 2
√

1 = 2
√

2− 2 ≈ 0.8284 �

e. Substitution and integration by parts.

∫
y arctan

(
y2
)
dy =

∫
arctan(w)

1

2
dw

Using the substitution
w = y2, so dw = 2y dy
and y dy = 1

2 dw.

=

∫
1

2
arctan(w) dw

Now use parts, with
u = arctan(w) and v′ = 1

2 ,
so u′ = 1

1+w2 and v = 1
2w.

=
1

2
w arctan(w)−

∫
1

1 + w2
· 1

2
w dw

Now let u = 1 + w2,
so du = 2w dw and
w dw = 1

2 du.

=
1

2
w arctan(w)−

∫
1

u
· 1

2
· 1

2
du

=
1

2
w arctan(w)− 1

4
ln(u) + C

=
1

2
w arctan(w)− 1

4
ln
(
1 + w2

)
+ C

=
1

2
y2 arctan

(
y2
)
− 1

4
ln
(
1 + y4

)
+ C �
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f. Integration by parts and the Power Rule.

We will use the parts u = ln(z) and v′ = z40, so u′ =
1

z
and v =

z41

41
.

∫ 2

1

z40ln (z) dz =
z41ln(z)

41

∣∣∣∣2
1

−
∫ 2

1

1

z
· z

41

41
dz =

[
241ln(2)

41
− 141ln(1)

41

]
− 1

41

∫ 2

1

z40 dz

=

[
241ln(2)

41
− 1 · 0

41

]
− 1

41
· z

41

41

∣∣∣∣2
1

=
241ln(2)

41
−
[

241

412
− 141

412

]
=

241ln(2)

41
− 241 − 1

412
≈ [Calculator screams.] �

3. Do any five (5) of a–h. [20 = 5 × 4 each]

a. Use the limit definition of the derivative to show that
d

dx
x4 = 4x3.

b. Compute lim
x→0

x−1/2 sin
(
x2
)
.

c. What is the minimum possible perimeter of a rectangle with area 25 m2?

d. Sketch the solid obtained by revolving y = 1 − x2, for −1 ≤ x ≤ 1, about the
y-axis, and find the volume of this solid.

e. Find any and all vertical and horizontal asymptotes of y = arctan
(
x2
)
.

f. Find all the local maximum and minimum values of y = xe−x
2

on (−∞,∞).

g. Use the ε–δ definition of limits to verify that lim
x→0

x sin(x) = 0.

h. Sketch the region whose bottom border is given by y =
x2

2
for 0 ≤ x ≤ 2, and

whose top border is given by y = 2x for 0 ≤ x ≤ 1 and by y = 2 for 1 ≤ x ≤ 2,
and find the area of this region.

Solutions. a. We plug f(x) = x4 into the limit definition of the derivative and go:

d

dx
x4 = lim

h→0

(x+ h)4 − x4

h
= lim
h→0

x4 + 4x3h+ 6x2h2 + 4xh3 + h4 − x4

h

= lim
h→0

4x3h+ 6x2h2 + 4xh3 + h4

h
= lim
h→0

(
4x3 + 6x2h+ 4xh2 + h3

)
= 4x3 + 6x2 · 0 + 4x · 02 + 03 = 4x3 �

b. For those who noticed: lim
x→0

x−1/2 sin
(
x2
)

is a regular, i.e. two-sided, limit, but

x−1/2 sin
(
x2
)

=
sin
(
x2
)

√
x

is undefined for x < 0. Thus the given limit is undefined too. �
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b. For those who didn’t notice, but just went on to compute the limit. What follows is
the computation of the one-sided limit limx→0+ x

−1/2 sin
(
x2
)
, but no points were taken

off for proceeding as if the two-sided limit made sense. We will use l’Hôpital’s Rule:

lim
x→0+

x−1/2 sin
(
x2
)

= lim
x→0+

sin
(
x2
)

x1/2
→ 0
→ 0

= lim
x→0+

d
dx sin

(
x2
)

d
dxx

1/2
= lim
x→0+

cos
(
x2
)
· ddxx

2

1
2x
−1/2

= lim
x→0+

2x cos
(
x2
)

1
2x1/2

= lim
x→0+

2x cos
(
x2
)
· 2x1/2 = lim

x→0+
4x3/2 cos

(
x2
)

= 4 · 03/2 · cos
(
02
)

= 4 · 0 · 1 = 0 �

c. A rectangle of width w and height h has area A = wh and perimeter P = 2w + 2h.

Since A = wh = 25 in this case, h =
25

w
, and so P = 2w+

50

w
. Note that 0 < w <∞ since

h =
25

w
and h must be positive and there are no other restrictions on h and w. Then

lim
w→0

P = lim
w→0

(
2w +

50

w

)
= 0 +∞ =∞

and lim
w→∞

P = lim
w→∞

(
2w +

50

w

)
=∞+ 0 =∞ ,

so the minimum length of the perimeter P does not occur at the extremes of the interval.

Since P = 2w +
50

w
is defined and differentiable for 0 < w <∞, the minimum must occur

at a critical point inside the interval.

dP

dw
=

d

dw

(
2w +

50

w

)
= 2− 50

w2
= 0 ⇐⇒ 2w2 = 50 ⇐⇒ w2 = 25 ⇐⇒ w = ±5

w = −5 is not a possible width, so the only critical point, and hence minimum, is w = 5.

We can make an additional check that this is a minimum by observing that
dP

dw
= 2− 50

w2

is < 0 (so P is decreasing) when 0 < w < 5 and is > 0 (so P is increasing) when w > 5.
It follows that the rectangle with minimum perimeter that has area 25 m2 has width

w = 5 m and height h =
25

5
= 5 m – it’s a square! – and that minimum perimeter is

therefore P = 2 · 5 + 2 · 5 = 10 + 10 = 20 m. �
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d. Note that to get a solid, rather than just a surface, we need to define a region. In this
case, the intent was to have y = 0, i.e. the x-axis, be the bottom of the region. Here is a
sketch of the solid:

To help with the solutions below, the sketch includes a disk cross-section outlined in
dots and a cylindrical shell cross-section outlined in long dashes. We will find the volume
of the solid using both the disk/washer method or the cylindrical shell method. (One
suffices for an answer on the exam, of course. :-)

i. Disk/washer method. The variable perpendicular to the disks here is y, so we will use it
as the basic variable. Note that our original curve, y = 1−x2 for−1 ≤ x ≤ 1, has 0 ≤ y ≤ 1.

The disk at y has radius r = x =
√

1− y and hence area πr2 = π
(√

1− y
)2

= π(1 − y).
It follows that the volume of the solid is:

V =

∫ 1

0

πr2 dy = π

∫ 1

0

(1− y) dy = π

(
y − y2

2

)∣∣∣∣1
0

= π

(
1− 12

2

)
− π

(
0− 02

2

)
= π · 1

2
− π · 0 =

π

2

ii. Cylindrical shell method. The variable perpendicular to the shells here is x, so we will
use it as the basic variable. Note that our original curve, y = 1 − x2 for −1 ≤ x ≤ 1,
is symmetric about the y-axis, so the region sweeps out the volume twice over when
rotated about the y-axis. We can fix this by using only half the region, say the part
for 0 ≤ x ≤ 1. [Why was this not a problem in the disk method above?] The shell at
x, for 0 ≤ x ≤ 1 has radius r = x and height h = y − 0 = 1 − x2, and hence area
2πrh = πx

(
1− x2

)
= π

(
x− x3

)
. It follows that the volume fo the solid is:

V =

∫ 1

0

2πrh dx = 2π

∫ 1

0

(
x− x3

)
dx = 2π

(
x2

2
− x4

4

)∣∣∣∣1
0

= 2π

(
12

2
− 14

4

)
− 2π

(
02

2
− 04

4

)
= 2π · 1

4
− 2π · 0 =

π

2
�
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e. y = arctan
(
x2
)

is a composition of functions that are defined and continuous ev-
erywhere, so it is also defined and continuous everywhere, and therefore has no vertical
asymptotes.

As for horizontal asymptotes, recall that lim
t→+∞

arctan(t) =
π

2
. It follows that

lim
x→−∞

arctan
(
x2
)

=
π

2
since x2 → +∞ as x→ −∞

and lim
x→+∞

arctan
(
x2
)

=
π

2
since x2 → +∞ as x→ +∞.

Thus y = arctan
(
x2
)

has a horizontal asymptote of y =
π

2
in both directions. �

f. Observe that y = xe−x
2

is defined and continuous, and also differentiable, on (−∞,∞),
so we don’t have to worry about discontinuities, such as vertical asymptotes, complicating
things and just focus on critical points.

dy

dx
=

d

dx

(
xe−x

2
)

=

[
d

dx
x

]
e−x

2

+ x

[
d

dx
e−x

2

]
= 1e−x

2

+ xe−x
2

· d
dx

(
−x2

)
= e−x

2

(1 + x(−2x)) = e−x
2 (

1− 2x2
)

Since e−x
2

> 0 for all x,
dy

dx
= 0 ⇐⇒ 1 − 2x2 = 0 ⇐⇒ x =

±1√
2

. Moreover,
dy

dx
> 0

exactly when 1 − 2x2 > 0, which is the case when
−1√

2
< x <

1√
2

, and
dy

dx
< 0 exactly

when 1− 2x2 < 0, which is the case when x <
−1√

2
or x > 1√

2
.

It follows that the graph of y = xe−x
2

is decreasing when x <
−1√

2
, increasing when

−1√
2
< x <

1√
2

, and decreasing again when x > 1√
2
. Thus x =

−1√
2

is a local minimum and

x =
1√
2

is a local maximum. The values of y = xe−x
2

at these points are y =
−e−1/2√

2
=

−1√
2e

and y =
e−1/2√

2
=

1√
2e

, respectively. �

g. We will use the ε–δ definition of limits to verify that lim
x→0

x sin(x) = 0. Observe that

because |sin(x)| ≤ 1 for all x, we have |x sin(x)− 0| = |x sin(x)| ≤ |x| = |x− 0|.
Suppose now that we are given an ε > 0. Let δ = ε, so δ > 0 and if |x − 0| < δ,

then |x sin(x)− 0| ≤ |x| = |x− 0| < δ = ε, i.e. |x sin(x)− 0| < ε. By the ε–δ definition of
limits, it follows that lim

x→0
x sin(x) = 0. �
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h. Here is a sketch of the region in question:

We compute the area of this region as usual, A =
∫ 2

0
(upper− lower) dx, with the

small caveat that we have to break the integral up according to the change in what the
upper border is:

A =

∫ 2

0

(upper− lower) dx =

∫ 1

0

(
2x− x2

2

)
dx+

∫ 2

1

(
2− x2

2

)
dx

=

(
2 · x

2

2
− 1

2
· x

3

3

)∣∣∣∣1
0

+

(
2x− 1

2
· x

3

3

)∣∣∣∣2
1

=

(
x2 − x3

6

)∣∣∣∣1
0

+

(
2x− x3

6

)∣∣∣∣2
1

=

(
12 − 13

6

)
−
(

02 − 03

6

)
+

(
2 · 2− 23

6

)
−
(

2 · 1− 13

6

)
=

(
1− 1

6

)
− 0 +

(
4− 4

3

)
−
(

2− 1

6

)
=

5

6
+

8

3
− 11

6
=

16

6
− 6

6
=

10

6
=

5

3
�
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4. Find the domain as well as any (and all) intercepts, vertical and horizontal asymptotes,
intervals of increase, decrease and concavity, and maximum, minimum, and inflection

points of h(x) =
x

1− x2
, and sketch its graph based on this information. [12]

Solution. i. Domain. h(x) =
x

1− x2
is defined for all x except where 1−x2 = 0, i.e. when

x = ±1. The domain of h(x) is therefore {x ∈ R | x 6= ±1 } = (−∞,−1)∪ (−1, 1)∪ (1,∞).

ii. Intercepts. Since h(0) =
0

1− 02
= 0, h(x) has a y-intercept of y = 0.

As h(x) =
x

1− x2
= 0 ⇐⇒ x = 0, h(x) has an x-intercept of x = 0. Note that this

is also the y-intercept.

iii. Vertical asymptotes. h(x) is continuous and differentiable wherever it is defined, since
it is a composition of continuous and differentiable functions, so the only places there might
be vertical asymptotes would be at x = ±1, where h(x) is undefined. We take limits from
each side at both of these points to check for vertical asymptotes:

lim
x→−1−

h(x) = lim
x→−1−

x

1− x2
→ −1−

→ 0−
= +∞

lim
x→−1+

h(x) = lim
x→−1+

x

1− x2
→ −1+

→ 0+
= −∞

lim
x→+1−

h(x) = lim
x→+1−

x

1− x2
→ +1−

→ 0+
= +∞

lim
x→+1+

h(x) = lim
x→+1+

x

1− x2
→ +1−

→ 0−
= −∞

It follows that h(x) has vertical asymptotes at both x = −1 and x = +1. At both points
h(x) approaches +∞ from the left and approaches −∞ from the right.

iv. Horizontal asymptotes. We take limits as x→ ±∞ to check for horizontal asymptotes,
with a little help from l’Hôpital’s Rule:

lim
x→−∞

h(x) = lim
x→−∞

x

1− x2
→ −∞
→ −∞ = lim

x→−∞

d
dxx

d
dx (1− x2)

= lim
x→−∞

1

−2x

→ 1
→ +∞ = 0+

lim
x→+∞

h(x) = lim
x→+∞

x

1− x2
→ +∞
→ −∞ = lim

x→+∞

d
dxx

d
dx (1− x2)

= lim
x→+∞

1

−2x

→ 1
→ −∞ = 0−

Thus h(x) has y = 0 as a horizontal asymptote in both directions, which it approaches
from above on the left and from below on the right.

v. Intervals of increase and decrease and maximum and minimum points. As usual, we
take the derivative and see what it does:

h′(x) =
d

dx

(
x

1− x2

)
=

[
d
dxx
) (

1− x2
)
− x

[
d
dx

(
1− x2

)]
(1− x2)

2 =
1
(
1− x2

)
− x(−2x)

(1− x2)
2

=
1− x2 + 2x2

(1− x2)
2 =

1 + x2

(1− x2)
2

10



h′(x) fails to be defined exactly where h(x) fails to be defined, namely at x = ±1. Note

that since both the numerator and denominator of h′(x) =
1 + x2

(1− x2)
2 are positive for all x

where h(x) is defined, h′(x) > 0 for all x 6= ±1, and so h(x) is increasing for all x 6= ±1.
Thus h(x) has no critical points and hence no maxima or minima. As usual, we summarize
this information in a table:

x (−∞,−1) −1 (−1, 1) 1 (1,∞)
h′(x) + undef + undef +
h(x) ↑ undef ↑ undef ↑

vi. Intervals of concavity and inflection points. As usual, we compute the second derivative
and take it from there:

h′′(x) =
d

dx

(
1 + x2

(1− x2)
2

)
=

[
d
dx

(
1 + x2

)] (
1− x2

)2 − (1 + x2
) [

d
dx

(
1− x2

)2](
(1− x2)

2
)2

=
2x
(
1− x2

)2 − (1 + x2
)
· 2
(
1− x2

)
· ddx

(
1− x2

)
(1− x2)

4

=
2x
(
1− x2

)2 − 2
(
1 + x2

) (
1− x2

)
(−2x)

(1− x2)
4 =

2x
(
1− x2

)
+ 4x

(
1 + x2

)
(1− x2)

3

=
2x− 2x3 + 4x+ 4x3

(1− x2)
3 =

6x+ 2x3

(1− x2)
3 =

2x
(
3 + x2

)
(1− x2)

3

Observe that h′′(x) is undefined exactly where h(x) and h′(x) are undefined, namely at
x = ±1. As 3 + x2 > 0 for all x, h′′(x) = 0 exactly when x = 0. Since 2x is positive or

negative exactly as x is positive or negative, and
(
1− x2

)3
is positive or negative exactly

when 1− x2 is positive or negative, i.e. when −1 < x < 1 and when |x| > 1, respectively,

we have that h′′(x) =
2x
(
3 + x2

)
(1− x2)

3 is positive when x < −1, negative when −1 < x < 0,

positive when 0 < x < 1, and negative when x > 1. This means that the original function
h(x) is concave up when x < −1, concave down when −1 < x < 0, has an inflection point
at x = 0, is concave up when 0 < x < 1, and is concave down when x > 1. As usual, we
summarize this information in a table:

x (−∞,−1) −1 (−1, 0) 0 (0, 1) 1 (1,∞)
h′′(x) + undef − 0 + undef −
h(x) ^ undef _ infl. pt. ^ undef _

11



vii. Graph. It’s a cheat, but here is the graph of h(x) =
x

1− x2
, as drawn by a program

called kmplot:

�

12



Part Yeti. Do any two (2) of 5–7. [Subtotal = 28 = 2 × 14 each]

5. A rectangle has its base on the x-axis and its top side runs from the line y = x + 3
on the left to the line y = 3 − 3x on the right. Find the maximum area of such a
rectangle.

Solution. Here is a sketch of the setup, with the right edge of the rectangle at x for some
0 ≤ x ≤ 1 and the left edge at a for some −3 ≤ a ≤ 0:

The rectangle with it’s right edge at x for some 0 ≤ x ≤ 1 has its top edge at y = 3−3x.
If the left edge is at a for some −3 ≤ a ≤ 0, then we must have a + 3 = y = 3 − 3x, so
a = −3x. It follows that the rectangle has width w = x− (−3x) = x+ 3x = 4x and height
h = y − 0 = 3− 3x, and hence has area A(x) = wh = 4x(3− 3x) = 12x− 12x2. Our task
is to maximize A(x) for 0 ≤ x ≤ 1. Note that A(x) is defined and differentiable for all x,
so we only need to check the values of A(x) at the endpoints of the interval [0, 1] and at
any critical points in the interval.

At the endpoints of the interval [0, 1] we have A(0) = 12 · 0− 12 · 02 = 0− 0 = 0 and
A(1) = 12 · 1− 12 · 12 = 12− 12 = 0, respectively. It remains to check any critical points
in the interval:

A′(x) =
d

dx

(
12x− 12x2

)
= 12− 12 · 2x = 12(1− 2x) = 0 ⇐⇒ x =

1

2

The only critical point, at x = 1
2 , is indeed in the interval [0, 1]. Since

A

(
1

2

)
= 12 · 1

2
− 12

(
1

2

)2

= 6− 12 · 1

4
= 6− 3 = 3

is greater than the values of A(x) at the endpoints, the greatest possible of area of a
rectangle in the given setup is 3. �
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6. Sketch the ellipse given by
x2

9
+
y2

4
= 1 and find its area.

Hint. The integral that would compute the area of an unit circle might be of interest.

Solution. Here is a sketch of the ellipse, with a bonus unit circle x2 + y2 = 1 inside it:

We will compute the area using two different methods.

i. Using calculus and the hint. We’ll set up the integral for computing the area of the
ellipse and then try to figure out how to evaluate it. Keeping the hint in mind, note that
the integral that computes the area of the unit circle is:

U =

∫ 1

−1
(upper− lower) dx =

∫ 1

−1

(√
1− x2 − (−1)

√
1− x2

)
dx = 2

∫ 1

−1

√
1− x2 dx

Since the area of an unit circle is π12 = π, it follows that

∫ 1

−1

√
1− x2 dx =

π

2
.

Observe that x runs from −3 to 3 for the ellipse, so the area integral should have

the form A =
∫ 3

−3 (upper− lower) dx. To find the equations for the upper and lower
boundaries, we need to solve the equation giving the ellipse for y:

x2

9
+
y2

4
= 1 =⇒ y2

4
= 1− x2

9
=⇒ y2 = 4

(
1− x2

9

)
=⇒ y = ±2

√
1− x2

9

It follows that the area of the ellipse is given by:

E =

∫ 3

−3

(
2

√
1− x2

9
− (−2)

√
1− x2

9

)
dx = 4

∫ 3

−3

√
1− x2

9
dx

14



Following the implications of the hint, we will try to simplify the integral to make it
look like the integral that computes the area of the circle. Specifically, we will use the

substitution u =
x

3
, so du = 1

3 dx and dx = 3 du, and change the limits as we go along:

x −3 3
u −1 1

. Note also that
x2

9
= u2. Then

E = 4

∫ 3

−3

√
1− x2

9
dx = 4

∫ 1

−1

√
1− u2 3 du = 12

∫ 1

−1

√
1− x2 dx = 12 · π

2
= 6π ,

so the area of the ellipse is 6π.

ii. Using linear algebra and a little inspiration from the hint. Consider the sketch of the
unit circle and the ellipse above. If you stretch the unit circle away from the origin, by a
factor of 3 horizontally and by a factor of 2 vertically, you should get a curve that looks
like the ellipse. In fact, you do get the ellipse:

Suppose the circle has equation u2 + v2 = 1. [We’re using u and v here to avoid
confusing ourselves by overusing x and y.] If we stretch it out by a factor of 3 horizontally,
we have x = 3u, and by a factor of 2 vertically, we have y = 2v. For the linear algebra

geeks∗, this corresponds to the linear transformation given by the matrix equation

[
x
y

]
=[

3 0
0 2

] [
u
v

]
. Anyway, we then have u =

x

3
and v =

y

2
, so the stretched out curve satisfies

x2

9
+
y2

4
=
(x

3

)2
+
(y

2

)2
= u2 + v2 = 1 ,

i.e.
x2

9
+
y2

4
= 1, so it is the ellipse.

How does the stretch affect areas? We can test that by seeing what it does to an
unit square with side parallel to the axes: if we stretch it by a factor of 3 horizontally and
factor of 2 vertically, we get a rectangle that is 3 units wide and 2 units tall, so it has an
area of 3 · 2 = 6, which is 6 times the area of the unit square.

It follows that the area of the ellipse
x2

9
+
y2

4
= 1 should be 6 times the area of the

unit circle, that is, 6π. �

∗ Should we call them linearati , just to make it seem classier?
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7. Sand is poured onto a level floor at a constant rate of 100 L/min = 0.1 m3/min,
and at any given instant it forms a conical pile with the height equal to the radius of
the base. Compute the rate of change of each of the following at the instant that the
height of the cone is 1 m:

i. The height of the cone. [5]
ii. The area of the circular base of the cone. [3]

iii. The surface area of the rest of the cone. [6]

Note. The volume of a cone with base radius r and height h is V =
1

3
πr2h and its

surface area (not counting the base) is S = πr
√
r2 + h2.

Solution. Since h = r for the conical pile of sand, its volume is V =
1

3
πr3 and its surface

area, not counting the base, is S = πr
√
r2 + r2 = πr

√
2r2 = πr ·

√
2r =

√
2πr2. We are

given that
dV

dt
= 0.1 m3/min and asked to compute various other rates of change related

to the conical sand pile at the instant that the height, and hence the base radius, of the
conical pile is 1 m.

i. Since we always have h = r in this setup,
dh

dt
=
dr

dt
at any given instant. It follows from

0.1 =
dV

dt
=

d

dt

(
1

3
πr3
)

=
π

3

(
d

dr
r3
)
dr

dt
=
π

3
· 3r2 · dr

dt
= πr2

dr

dt
,

that at any given instant
dr

dt
=

0.1

πr2
. Thus, at the instant that h = r = 1 m, we have

dh

dt

∣∣∣∣
h=1

=
dr

dt

∣∣∣∣
r=1

=
0.1

π12
=

0.1

π
≈ 0.0318 m/min. That is, the height of the conical pile is

increasing at a rate of
0.1

π
m/min ≈ 3.18 cm/min at the instant that the pile is 1 m high.

ii. The area of a circle of radius r is A = πr2, so its rate of change with time is

dA

dt
=

d

dt
πr2 = π

(
d

dr
r2
)
dr

dt
= π · 2r · dr

dt
= 2πr

dr

dt
.

Recall from the solution to part i above that
dr

dt
=

0.1

πr2
. It follows that at the instant that

r = h = 1 m, we have

dA

dt

∣∣∣∣
h=1

=
dA

dt

∣∣∣∣
r=1

= 2πr
dr

dt

∣∣∣∣
r=1

= 2πr
0.1

πr2

∣∣∣∣
r=1

=
0.2

r

∣∣∣∣
r=1

=
0.2

1
= 0.2 · π ≈ 0.2 m2/min .

That is, the area of the circular base of the sand pile is growing at the rate of 0.2 m2/min =
2000 cm2/min at the instant that the pile is 1 m high.
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iii. As noted above the surface area of the conical sand pile, not counting the base, is
S =

√
2πr2. Thus

dS

dt
=

d

dt

(√
2πr2

)
=
√

2π

(
d

dr
r2
)
dr

dt
=
√

2π · 2r · dr
dt

= 2
√

2πr
dr

dt
.

Recall from the solution to part i above that
dr

dt
=

0.1

πr2
. It follows that at the instant that

r = h = 1 m, we have

dS

dt

∣∣∣∣
h=1

=
dS

dt

∣∣∣∣
r=1

= 2
√

2πr
dr

dt

∣∣∣∣
r=1

= 2
√

2πr
0.1

πr2

∣∣∣∣
r=1

=
0.2 ·

√
2

r

∣∣∣∣∣
r=1

=
0.2 ·

√
2

1
= 0.2 ·

√
2 ≈ 0.2828 m2/min .

That is, the surface area of the conical sand pile, not counting the base, is growing at a
rate of 0.2 ·

√
2 m2/min ≈ 0.2828 m2/min = 2828 cm2/min at the instant that the pile is

1 m high. �
[Total = 100]

Part Zombie. Bonus problems! If you feel like it, do one or both of these.

2
√
64. If

∞∑
n=1

1
n2 = 1 + 1

4 + 1
9 + 1

16 + · · · = π2

6 , what does
∞∑
k=0

1
(2k+1)2 = 1 + 1

9 + 1
25 + 1

49 + · · ·

add up to? [1]

Answer. It adds up to
π2

8
. You figure out why! :-) �

3
√
729. Write an original poem touching on calculus or mathematics in general. [1]

Answer. You’re on your own here! :-) �

I hope that you enjoyed the course. Enjoy the summer!
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