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Trigonometric Integrals and Substitutions
A Brief Summary

0. A minimal set of trigonometric identities

• sin2(x) + cos2(x) = 1
[Often used in the form cos2(x) = 1− sin2(x) or sin2(x) = 1− cos2(x).]

• 1 + tan2(x) = sec2(x)
[Sometimes used in the form sec2(x)− 1 = tan2(x).]

• sin(2x) = 2 sin(x) cos(x)

• cos(2x) = cos2(x)− sin2(x)
= 2 cos2(x)− 1
= 1− 2 sin2(x)

[Sometimes used in the form cos2(x) = 1
2 + 1

2 cos(2x) or sin2(x) = 1
2 −

1
2 cos(2x).]

It is also useful to keep in mind that:

• sin(x) and cos(x) are periodic with period 2π: for any real number x and any integer
n, sin(x+ 2nπ) = sin(x) and cos(x+ 2nπ) = cos(x).

• sin(x) is an odd function, sin(−x) = − sin(x) for all x, and cos(x) is an even function,
cos(−x) = cos(x) for all x.

• Phase shifts are fun: sin
(
x− π

2

)
= cos(x), cos

(
x+ π

2

)
= sin(x), sin(x±π) = − sin(x),

and cos(x± π) = − cos(x), for all x.

1. Some trigonometric integral reduction formulas

So long as n ≥ 2, we have:

•
∫

sinn(x) dx = − 1

n
sinn−1(x) cos(x) +

n− 1

n

∫
sinn−2(x) dx

•
∫

cosn(x) dx =
1

n
cosn−1(x) sin(x) +

n− 1

n

∫
cosn−2(x) dx

•
∫

tann(x) dx =
1

n− 1
tann−1(x)−

∫
tann−2(x) dx

•
∫

secn(x) dx =
1

n− 1
tan(x) secn−2(x) +

n− 2

n− 1

∫
secn−2(x) dx

• Just for fun – one usually looks this up as necessary – if we also have k ≥ 2, then:∫
sink(x) cosn(x) dx = − sink−1(x) cosn+1(x)

k + n
+
k − 1

k + n

∫
sink−2(x) cosn(x) dx

= +
sink+1(x) cosn−1(x)

k + n
+
n− 1

k + n

∫
sink(x) cosn−2(x) dx

For real obscurity, try to find or compute the corresponding formulas for integrands
with mixed sec(x) and tan(x), not to mention the various reduction formulas involving
csc(x) and/or cot(x).
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2. Suggestions for trigonometric substitutions

A table of the basic forms:

If you see try substituting so and

√
1− x2 x = sin(θ) dx = cos(θ) dθ cos(θ) =

√
1− x2√

1 + x2 x = tan(θ) dx = sec2(θ) sec(θ) =
√

1 + x2√
x2 − 1 x = sec(θ) dx = sec(θ) tan(θ) dθ tan(θ) =

√
x2 − 1

Here is a table of more general forms:

If you see try substituting so and

√
a2 − b2x2 x = a

b sin(θ) dx = a
b cos(θ) dθ cos(θ) = 1

a

√
a2 − b2x2√

a2 + b2x2 x = a
b tan(θ) dx = a

b sec2(θ) dθ sec(θ) = 1
a

√
a2 + b2x2√

b2x2 − a2 x = a
b sec(θ) dx = a

b sec(θ) tan(θ) dθ tan(θ) = 1
a

√
b2x2 − a2

3. Handling arbitrary quadratics

How does one handle even more general situations with the square root of an arbitrary
quadratic like

√
px2 + qx+ r (where p 6= 0) occurs in the integrand? In this case one

“completes the square” on the quadratic,

px2 + qx+ r = p

[
x2 +

q

p
x+

r

p

]
= p

[(
x+

q

2p

)2

− q2

4p2
+
r

p

]

= p

(
x+

q

2p

)2

+

(
r − q2

4p

)
,

and then uses a substitution like u = x+
q

2p
to hopefully get a form like one of the “more

general” ones above. If you get a form like
√
−b2x2 − a2 where what is inside the square

root is always negative, you’re out of luck unless you want to start doing calculus with
complex numbers.∗

4. Be alert to easier alternatives

Do not use the guidelines above without considering possible alternatives: a lot of
integrals for which some trigonometric substitution works can also be handled, sometimes
more easily, in other ways. For example,

∫
x
√
x2 − 1 dx is probably most easily done with

the basic substitution u = x2 − 1.

∗ Take MATH 3770H in some later year, if you’re interested. Complex analysis has some really fun
results, such as Liouville’s Theorem. Where there are plenty of non-constant differentiable functions with
bounded output that are defined for all real numbers, such as sin(x), Liouville’s Theorem asserts that
every bounded function that is defined and differentiable for all complex numbers is actually a constant
function.
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