Mathematics 1120H - Calculus II: Integrals and Series

Trent University, Winter 2020
Trigonometric Integrals and Substitutions
A Brief Summary

0. A minimal set of trigonometric identities

- $\sin ^{2}(x)+\cos ^{2}(x)=1$
[Often used in the form $\cos ^{2}(x)=1-\sin ^{2}(x)$ or $\sin ^{2}(x)=1-\cos ^{2}(x)$.]
- $1+\tan ^{2}(x)=\sec ^{2}(x)$
[Sometimes used in the form $\sec ^{2}(x)-1=\tan ^{2}(x)$.]
- $\sin (2 x)=2 \sin (x) \cos (x)$
- $\cos (2 x)=\cos ^{2}(x)-\sin ^{2}(x)$

$$
\begin{aligned}
& =2 \cos ^{2}(x)-1 \\
& =1-2 \sin ^{2}(x)
\end{aligned}
$$

[Sometimes used in the form $\cos ^{2}(x)=\frac{1}{2}+\frac{1}{2} \cos (2 x)$ or $\sin ^{2}(x)=\frac{1}{2}-\frac{1}{2} \cos (2 x)$.]
It is also useful to keep in mind that:

- $\sin (x)$ and $\cos (x)$ are periodic with period 2π : for any real number x and any integer $n, \sin (x+2 n \pi)=\sin (x)$ and $\cos (x+2 n \pi)=\cos (x)$.
- $\sin (x)$ is an odd function, $\sin (-x)=-\sin (x)$ for all x, and $\cos (x)$ is an even function, $\cos (-x)=\cos (x)$ for all x.
- Phase shifts are fun: $\sin \left(x-\frac{\pi}{2}\right)=\cos (x), \cos \left(x+\frac{\pi}{2}\right)=\sin (x), \sin (x \pm \pi)=-\sin (x)$, and $\cos (x \pm \pi)=-\cos (x)$, for all x.

1. Some trigonometric integral reduction formulas

So long as $n \geq 2$, we have:

- $\int \sin ^{n}(x) d x=-\frac{1}{n} \sin ^{n-1}(x) \cos (x)+\frac{n-1}{n} \int \sin ^{n-2}(x) d x$
- $\int \cos ^{n}(x) d x=\frac{1}{n} \cos ^{n-1}(x) \sin (x)+\frac{n-1}{n} \int \cos ^{n-2}(x) d x$
- $\int \tan ^{n}(x) d x=\frac{1}{n-1} \tan ^{n-1}(x)-\int \tan ^{n-2}(x) d x$
- $\int \sec ^{n}(x) d x=\frac{1}{n-1} \tan (x) \sec ^{n-2}(x)+\frac{n-2}{n-1} \int \sec ^{n-2}(x) d x$
- Just for fun - one usually looks this up as necessary - if we also have $k \geq 2$, then:

$$
\begin{aligned}
\int \sin ^{k}(x) \cos ^{n}(x) d x & =-\frac{\sin ^{k-1}(x) \cos ^{n+1}(x)}{k+n}+\frac{k-1}{k+n} \int \sin ^{k-2}(x) \cos ^{n}(x) d x \\
& =+\frac{\sin ^{k+1}(x) \cos ^{n-1}(x)}{k+n}+\frac{n-1}{k+n} \int \sin ^{k}(x) \cos ^{n-2}(x) d x
\end{aligned}
$$

For real obscurity, try to find or compute the corresponding formulas for integrands with mixed $\sec (x)$ and $\tan (x)$, not to mention the various reduction formulas involving $\csc (x)$ and/or $\cot (x)$.

2. Suggestions for trigonometric substitutions

A table of the basic forms:
If you see try substituting so and

$$
\begin{array}{llll}
\sqrt{1-x^{2}} & x=\sin (\theta) & d x=\cos (\theta) d \theta & \cos (\theta)=\sqrt{1-x^{2}} \\
\sqrt{1+x^{2}} & x=\tan (\theta) & d x=\sec ^{2}(\theta) & \sec (\theta)=\sqrt{1+x^{2}} \\
\sqrt{x^{2}-1} & x=\sec (\theta) & d x=\sec (\theta) \tan (\theta) d \theta & \tan (\theta)=\sqrt{x^{2}-1}
\end{array}
$$

Here is a table of more general forms:

\[

\]

3. Handling arbitrary quadratics

How does one handle even more general situations with the square root of an arbitrary quadratic like $\sqrt{p x^{2}+q x+r}$ (where $p \neq 0$) occurs in the integrand? In this case one "completes the square" on the quadratic,

$$
\begin{aligned}
p x^{2}+q x+r & =p\left[x^{2}+\frac{q}{p} x+\frac{r}{p}\right]=p\left[\left(x+\frac{q}{2 p}\right)^{2}-\frac{q^{2}}{4 p^{2}}+\frac{r}{p}\right] \\
& =p\left(x+\frac{q}{2 p}\right)^{2}+\left(r-\frac{q^{2}}{4 p}\right)
\end{aligned}
$$

and then uses a substitution like $u=x+\frac{q}{2 p}$ to hopefully get a form like one of the "more general" ones above. If you get a form like $\sqrt{-b^{2} x^{2}-a^{2}}$ where what is inside the square root is always negative, you're out of luck unless you want to start doing calculus with complex numbers.*

4. Be alert to easier alternatives

Do not use the guidelines above without considering possible alternatives: a lot of integrals for which some trigonometric substitution works can also be handled, sometimes more easily, in other ways. For example, $\int x \sqrt{x^{2}-1} d x$ is probably most easily done with the basic substitution $u=x^{2}-1$.

[^0]
[^0]: * Take MATH 3770H in some later year, if you're interested. Complex analysis has some really fun results, such as Liouville's Theorem. Where there are plenty of non-constant differentiable functions with bounded output that are defined for all real numbers, such as $\sin (x)$, Liouville's Theorem asserts that every bounded function that is defined and differentiable for all complex numbers is actually a constant function.

