Mathematics 1120H - Calculus II: Integrals and Series
 Trent University, Winter 2020

Take-Home Final Examination
Released at noon on Tuesday, 14 April, 2020.
Due by noon on Friday, 17 April, 2020.

Instructions

- You may consult your notes, handouts, and textbook from this course and any other math courses you have taken or are taking now. You may also use a calculator. However, you may not consult any other source, or give or receive any other aid, except for asking the instructor to clarify instructions or questions.
- Please submit an electronic copy of your solutions, preferably as a single pdf (a scan of handwritten solutions should be fine), via the Assignment module on Blackboard. If that doesn't work, please email your solutions to the intructor.
- Do all three (3) of Parts I - III, and, if you wish, Part IV as well.

Part I. Do both of $\mathbf{1}$ and 2. [$40=2 \times 20$ each]

1. Compute the integrals in four (4) of $\mathbf{a}-\mathbf{f}$. [$20=4 \times 5$ each]
a. $\int_{0}^{\pi / 2} \cos (x) \sqrt{1+\sin ^{2}(x)} d x$
b. $\int 2 x^{3} e^{-x^{2}} d x$
c. $\int \frac{(x+1)^{2}}{x^{2}+1} d x$
d. $\int_{-\pi / 2}^{\pi / 2} \sin ^{2}(x) \cos ^{3}(x) d x$
e. $\int_{0}^{\infty} x e^{-x} d x$
f. $\int e^{x} \cos (x) d x$
2. Determine whether the series converges or not in four (4) of $\mathbf{a}-\mathbf{f}$. [$20=4 \times 5 \mathrm{each}]$
a. $\sum_{n=1}^{\infty} \frac{e^{n}}{2^{n} n^{n}}$
b. $\sum_{n=0}^{\infty} 3^{n} 2^{-n}$
c. $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{e^{n}+n}$
d. $\sum_{n=2}^{\infty} \frac{1}{\ln (n)}$
e. $\sum_{n=3}^{\infty} \frac{1}{n[\ln (n)]^{2}}$
f. $\sum_{n=0}^{\infty} \frac{e^{n}}{e^{2 n}+1}$

Part II. Do any two (2) of $\mathbf{3}-\mathbf{5}$. [$20=2 \times 10$ each]
3. Find the volume of the solid obtained by revolving the region below $y=4-x^{2}$ and above $y=0$, for $0 \leq x \leq 2$, about the y-axis. [10]
4. Find the centroid of the region outside the circle $x^{2}+(y+4)^{2}=25$ and inside the circle $x^{2}+y^{2}=9$.[10]
5. Find the area of the surface obtained by revolving the curve $y=4-x^{2}$, for $0 \leq x \leq 2$, about the y-axis. [10]

Part III. Do any two (2) of $\mathbf{6}-\mathbf{8}$. [$20=2 \times 10$ each]
6. Find the radius and interval of convergence of the power series $\sum_{n=0}^{\infty} \frac{x^{2 n}}{(2 n)!}$. What function is it the Taylor series of? [10]
7. Suppose $p(x)=a_{0}+a_{1} x+a^{2} x^{2}+\cdots+a_{k} x^{k}$ is a polynomial of degree k. Find the Taylor series of $p(x)$, and find its radius and interval of convergence. [10]
8. Use the Taylor series of the three functions involved to show that $e^{i x}=\cos (x)+i \sin (x)$, where $i^{2}=-1$, i.e. $i=\sqrt{-1}$. [10]

$$
[\text { Total }=80]
$$

Part IV. Bonus! If you want to, do one or both of the following problems.
41. Write a poem touching on calculus or mathematics in general. [1]
42. Answer the riddle below, which supposedly gives the length of the Hellenistic mathematician Diophantus of Alexandria's life. [1]
126.-AAAO

12π
Twis tomb holds Diophantus. Ah, how great a marvel! the tomb tells scientifically the measure of his life. God granted him to be a boy for the sixth part of his life, and adding a twelfth part to this, he clothed his cheeks with down; He lit him the light of wedlock after a seventh part, and five years after his marriage He granted him a son. Alas! late-born wretched child; after attaining the measure of half his father's life, chill Fate took him. After consoling his grief by this science of numbers for four years he ended his life.

[^0]
[^0]: Thank you all for bearing with the course under difficult circumstances. It has been both a pleasure and an honour to teach you. May you and yours be well and safe, and MAY WE SEE EACH OTHER AGAIN IN BETTER TIMES.

