Mathematics 1120 H - Calculus II: Integrals and Series

Trent University, Winter 2020
Assignment \#6
Gregory's Series
Due on Thursday, 2 April.
(Please submit your solutions using Blackboard's assignment module.)
The rate of convergence of the alternating series $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\cdots$ got a little attention on Assignment $\# 5$ and its Maple-less alternative, Assignment \#5.1. It was mentioned there that this series adds up to $\frac{\pi}{4}$. In this assignment we shall see why it does so, using a method similar to that used in the lecture notes for 2020-03-19 to show that the alternating harmonic series adds up to $\ln (2)$ if it is not rearranged.

1. Find a power series representation of $\arctan (x)$. [6]

Hint: Start with the fact that $\frac{d}{d x} \arctan (x)=\frac{1}{1+x^{2}}$.
The power series representation obtained here is usually called Gregory's series after the Scottish mathematician and astronomer James Gregory (1638-1675) who rediscovered it in 1668. It had previously been discovered by the Indian mathematician and astronomer Madhava of Sangamagrama (1350-1410), and was independently rediscovered in 1676 by Gottfried Leibniz (1646-1716), one of the co-inventors of calculus.
2. Use the power series representation of $\arctan (x)$ obtained in $\mathbf{1}$ to conclude that

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\cdots=\frac{\pi}{4}
$$

3. How practical is it to use Gregory's series to compute (approximations to) π ? [3]
