Mathematics 1120H - Calculus II: Integrals and Series
 Trent University, Winter 2020
 Assignment \#5.1 - the Maple-less edition Guaranteeing Convergence
 Due on Thursday, 26 March.

Instructions: You may do one of Assignment \#5.1 and the original Assignment \#5. Either way, please submit your solutions on or by the due date using the assignment submission tool on Blackboard, preferably as a pdf. If that doesn't work, please email it to your instructor.

It's a fact that $\frac{1}{e}=e^{-1}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!}=1-\frac{1}{2}+\frac{1}{6}-\frac{1}{24}+\frac{1}{120}-\cdots$. (We'll see why this series adds up to $\frac{1}{e}$ once we do Taylor series.)

1. Find a value of m such that $\sum_{n=0}^{k} \frac{(-1)^{n}}{n!}=1-\frac{1}{2}+\frac{1}{6}-\frac{1}{24}+\cdots+\frac{(-1)^{k}}{k!}$ is guaranteed to be within $0.0001=10^{-4}$ of $\frac{1}{e}$ for all $k \geq m$ and explain why it's guaranteed. [3]
It's also a fact that $\frac{\pi}{4}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\cdots$. (Again, we'll see why this series adds up to $\frac{\pi}{4}$ once we do Taylor series.)
2. Find a value of m such that $\sum_{n=0}^{k} \frac{(-1)^{n}}{2 n+1}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\cdots+\frac{(-1)^{k}}{2 k+1}$ is guaranteed to be within $0.0001=10^{-4}$ of $\frac{\pi}{4}$ for all $k \geq m$ and explain why it's guaranteed. [3]

The series $\sum_{n=0}^{\infty} \frac{2}{(4 n+1)(4 n+3)}$ also adds up to $\frac{\pi}{4}$. (To see why, do a little algebra to answer question 3.)
3. How are these two series adding up to $\frac{\pi}{4}$ related, besides having the same sum? [4]

