Trent University, Winter 2019
 MATH 1120H Test

Friday, 1 March
Time: 11:00-11:50
Space: GCS 114

Instructions

- Show all your work. Legibly, please! Simplify where you reasonably can.
- If you have a question, ask it!
- Use the back sides of all the pages for rough work or extra space.
- You may use a calculator and (all sides of) an aid sheet.

1. Compute any four (4) of integrals a-f. [12 $=4 \times 3$ each]
a. $\int_{0}^{\pi / 2} \cos (x) \sin ^{3}(x) d x$
b. $\int_{2}^{\infty} \frac{1}{y^{3}} d y$
c. $\int e^{z} \cos (z) d z$
d. $\int \frac{5}{t^{2}+t-6} d t$
e. $\int \frac{1}{\sqrt{1-9 s^{2}}} d s$
f. $\int_{0}^{1} \frac{r+1}{r^{2}+1} d r$
2. Do any two (2) of parts a-c. [$8=2 \times 4$ each]
a. Use a Right-Hand Rule sum to compute $\int_{0}^{4} x d x$.
b. Find the area of the finite region above $y=e^{x}$ and below $y=(e-1) x+1$.
c. Find the arc-length of the curve $y=\frac{4 x}{3}$, where $0 \leq x \leq 3$.
3. Do either one (1) of parts a or b. [10]
a. Compute $\int \frac{x^{4}+x^{2}+1}{x^{3}+x} d x$.
b. A triangular flat plate of constant thickness and density has its vertices at the points $(0,0),(0,4)$, and (4,0). Find the coordinates of its centroid. (You may assume that units have been chosen so that mass per unit area equals 1.)
