
Mathematics 1120H – Calculus II: Integrals and Series
Trent University, Winter 2019

Assignment #6
Powerfully Serious Stuff
Due on Friday, 5 April.

1. Find a power series that is equal to f(x) =
1

1 + x2
when it converges and determine

its radius and interval of convergence. [3]

Hint: Think of
1

1 + x2
as the sum of a geometric series.

Solution. Recall that for a geometric series with first term a and common ratio r we have
a

1− r
= a + ar + ar2 + ar3 + · · · , so long as the series converges, which happens exactly

when |r| < 1. Writing
1

1 + x2
as

1

1− (−x2)
, we see that is is the sum of a geometric series

with first term a = 1 and common ratio r = −x2. Thus

1

1 + x2
=

1

1− (−x2)
= 1− x2 + x4 − x6 + x8 − · · · =

∞∑
n=0

(
−x2

)n
=

∞∑
n=0

(−1)nx2n ,

which converges exactly when |r| =
∣∣−x2∣∣ = x2 < 1, i.e. exactly when −1 < x < 1. It

follows that this power series has radius of convergence R = 1 and interval of convergence
(−1, 1). �

2. Use the power series you obtained in 1 to find a power series that is equal to arctan(x)
when it converges and determine its radius and interval of convergence. [3]

Hint: Integrate term-by-term.

Solution. Recall that
d

dx
arctan(x) =

1

1 + x2
. Since arctan(0) = 0, it follows that

arctan(x) =

∫ x

0

1

1 + t2
dt. Using our solution to 1 and applying the hint, we get:

arctan(x) =

∫ x

0

1

1 + t2
dt =

∫ x

0

[
1− t2 + t4 − t6 + · · ·

]
dt

=

∫ x

0

1 dt−
∫ x

0

t2 dt+

∫ x

0

t4 dt−
∫ x

0

t6 dt+ · · ·

= t|x0 −
t3

3

∣∣∣∣x
0

+
t5

5

∣∣∣∣x
0

− t7

7

∣∣∣∣x
0

+ · · ·

= x− x3

3
+
x5

5
− x7

7
+ · · · =

∞∑
n=0

(−1)nx2n+1

2n+ 1

Sadly, this is not a geometric series, so we need to a little work to determine the radius
and interval of convergence. As usual, we will use the Ratio Test to determine the radius



of convergence:

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣∣
(−1)n+1x2(n+1)+1

2(n+1)+1

(−1)nx2n+1

2n+1

∣∣∣∣∣∣ = lim
n→∞

∣∣∣∣ (−1)n+1x2n+3

2n+ 3
· 2n+ 1

(−1)nx2n+1

∣∣∣∣
= lim

n→∞

∣∣∣∣−x2(2n+ 1)

2n+ 3

∣∣∣∣ = lim
n→∞

x2 · 2n+ 1

2n+ 3
= x2 · lim

n→∞

2n+ 1

2n+ 3
·

1
n
1
n

= x2 · lim
n→∞

2 + 1
n

2 + 3
n

= x2 · 2 + 0

2 + 0
= x2 · 1 = x2

It follows by the Ratio Test that the series converges absolutely when x2 < 1, i.e. when
|x| < 1, and diverges when x2 > 1, i.e. when |x| > 1, so its radius of convergence is R = 1.
To find the interval of convergence, we need to check what happens when x2 = 1, i.e. when
x = −1 and when x = 1.

When x = −1, our series is

∞∑
n=0

(−1)nx2n+1

2n+ 1
=

∞∑
n=0

(−1)n(−1)2n+1

2n+ 1
=

∞∑
n=0

(−1)n+1

2n+ 1

because (−1)2n = 1 for all n ≥ 0. This is an alternating series – (−1)n+1 alternates and
1

2n+ 1
is positive – with decreasing absolute values –

1

2(n+ 1) + 1
<

1

2n+ 1
because

2(n + 1) + 1 = 2n + 3 > 2n + 1 – and whose terms have a limit of 0 – lim
n→∞

∣∣∣∣ (−1)n+1

2n+ 1

∣∣∣∣ =

lim
n→∞

1

2n+ 1
= 0 since 2n + 1 → ∞ as n → ∞. It follows that it converges by the

Alternating Series Test. Since the corresponding series of positive terms,
∞∑

n=0

1

2n+ 1
,

diverges by the Generalized p-Test because p = 1 − 0 = 1 ≯ 1,
∑∞

n=0
(−1)n+1

2n+1 converges
conditionally.

When x = 1, our series is
∞∑

n=0

(−1)nx2n+1

2n+ 1
=
∞∑

n=0

(−1)n12n+1

2n+ 1
=
∞∑

n=0

(−1)n

2n+ 1
. This is

just the negative of the series for x = −1 (since (−1)n+1 = −(−1)n), so it also converges
conditionally.

It follows from the above that the interval of convergence of the series
∞∑

n=0

(−1)nx2n+1

2n+ 1

is [−1, 1]. �

3. Use the power series you obtained in 2 to find a series summing to π. How many
terms of this series would you need to ensure that the partial sum is within 0.001 of
π? [4]

Hint: Hmm – what is arctan(1) equal to? For the second part, read up on the finer
details of alternating series.



Solution. Following the hint, and using our power series for arctan(x):

π

4
= arctan(1) =

∞∑
n=0

(−1)n12n+1

2n+ 1
=
∞∑

n=0

(−1)n

2n+ 1
= 1− 1

3
+

1

5
− 1

7
+

1

9
− · · ·

Multiplying both sides by 4 gives us:

π = 4

∞∑
n=0

(−1)n

2n+ 1
= 4

(
1− 1

3
+

1

5
− 1

7
+

1

9
− · · ·

)
= 4− 4

3
+

4

5
− 4

7
+

4

9
− · · ·

To estimate how many terms of the series are needed to ensure that the partial sum
up to that point is within 0.001 = 1

1000 of π we turn to the discussion at the end of §11.4 on

how to do the like with any alternating series. To summarize: If
∞∑

n=0

a+n is an alternating

series that passes the Alternating Series Test and hence converges to some number A, then

A is always between any two consecutive partial sums
N∑

n=0

an and
N+1∑
n=0

an of the series.

It follows that any partial sum

N∑
n=0

an is within the absolute value of the next term, i.e.

within |aN+1|, of the sum A of the entire series.
We now apply this observation to our series summing to π. The Nth partial sum

N∑
n=0

(−1)n
4

2n+ 1
is guaranteed to be within

∣∣∣∣(−1)N+1 4

2(N + 1) + 1

∣∣∣∣ =
4

2N + 3
of π. We

therefore need to find the (first, just to be efficient) N such that
4

2N + 3
≤ 1

1000
. This

will happen if 2N + 3 ≥ 4000, which will happen if N ≥ 4000− 3

2
=

3997

2
= 1998.5. The

first integer meeting this condition is N = 1999. We must therefore sum at least the first
1999 terms of the series to guarantee that the partial sum will be within 0.001 of π. �

Note: The series you (hopefully!) obtained in 2 is often called Gregory’s series after
James Gregory, who rediscovered it in 1668. It had been previously discovered by Madhava
of Sangamagrama (c. 1340 – c. 1425), a mathematician and astronomer from Kerala in
southern India. He also obtained the series formula for π in 3. Both the power series and
the series formula for π were also rediscovered by Gottfried Leibniz in the 1670s.


