Mathematics 1120H - Calculus II: Integrals and Series

Trent University, Winter 2019
Assignment \#6
Powerfully Serious Stuff
Due on Friday, 5 April.

1. Find a power series that is equal to $f(x)=\frac{1}{1+x^{2}}$ when it converges and determine its radius and interval of convergence. [3]
Hint: Think of $\frac{1}{1+x^{2}}$ as the sum of a geometric series.
Solution. Recall that for a geometric series with first term a and common ratio r we have $\frac{a}{1-r}=a+a r+a r^{2}+a r^{3}+\cdots$, so long as the series converges, which happens exactly when $|r|<1$. Writing $\frac{1}{1+x^{2}}$ as $\frac{1}{1-\left(-x^{2}\right)}$, we see that is is the sum of a geometric series with first term $a=1$ and common ratio $r=-x^{2}$. Thus

$$
\frac{1}{1+x^{2}}=\frac{1}{1-\left(-x^{2}\right)}=1-x^{2}+x^{4}-x^{6}+x^{8}-\cdots=\sum_{n=0}^{\infty}\left(-x^{2}\right)^{n}=\sum_{n=0}^{\infty}(-1)^{n} x^{2 n}
$$

which converges exactly when $|r|=\left|-x^{2}\right|=x^{2}<1$, i.e. exactly when $-1<x<1$. It follows that this power series has radius of convergence $R=1$ and interval of convergence $(-1,1)$.
2. Use the power series you obtained in $\mathbf{1}$ to find a power series that is equal to $\arctan (x)$ when it converges and determine its radius and interval of convergence. [3]

Hint: Integrate term-by-term.
Solution. Recall that $\frac{d}{d x} \arctan (x)=\frac{1}{1+x^{2}}$. Since $\arctan (0)=0$, it follows that $\arctan (x)=\int_{0}^{x} \frac{1}{1+t^{2}} d t$. Using our solution to $\mathbf{1}$ and applying the hint, we get:

$$
\begin{aligned}
\arctan (x) & =\int_{0}^{x} \frac{1}{1+t^{2}} d t=\int_{0}^{x}\left[1-t^{2}+t^{4}-t^{6}+\cdots\right] d t \\
& =\int_{0}^{x} 1 d t-\int_{0}^{x} t^{2} d t+\int_{0}^{x} t^{4} d t-\int_{0}^{x} t^{6} d t+\cdots \\
& =\left.t\right|_{0} ^{x}-\left.\frac{t^{3}}{3}\right|_{0} ^{x}+\left.\frac{t^{5}}{5}\right|_{0} ^{x}-\left.\frac{t^{7}}{7}\right|_{0} ^{x}+\cdots \\
& =x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\cdots=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2 n+1}
\end{aligned}
$$

Sadly, this is not a geometric series, so we need to a little work to determine the radius and interval of convergence. As usual, we will use the Ratio Test to determine the radius
of convergence:

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{\frac{(-1)^{n+1} x^{2(n+1)+1}}{2(n+1)+1}}{\frac{(-1)^{n} x^{2 n+1}}{2 n+1}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n+1} x^{2 n+3}}{2 n+3} \cdot \frac{2 n+1}{(-1)^{n} x^{2 n+1}}\right| \\
& =\lim _{n \rightarrow \infty}\left|\frac{-x^{2}(2 n+1)}{2 n+3}\right|=\lim _{n \rightarrow \infty} x^{2} \cdot \frac{2 n+1}{2 n+3}=x^{2} \cdot \lim _{n \rightarrow \infty} \frac{2 n+1}{2 n+3} \cdot \frac{\frac{1}{n}}{\frac{1}{n}} \\
& =x^{2} \cdot \lim _{n \rightarrow \infty} \frac{2+\frac{1}{n}}{2+\frac{3}{n}}=x^{2} \cdot \frac{2+0}{2+0}=x^{2} \cdot 1=x^{2}
\end{aligned}
$$

It follows by the Ratio Test that the series converges absolutely when $x^{2}<1$, i.e. when $|x|<1$, and diverges when $x^{2}>1$, i.e. when $|x|>1$, so its radius of convergence is $R=1$. To find the interval of convergence, we need to check what happens when $x^{2}=1$, i.e. when $x=-1$ and when $x=1$.

When $x=-1$, our series is $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2 n+1}=\sum_{n=0}^{\infty} \frac{(-1)^{n}(-1)^{2 n+1}}{2 n+1}=\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{2 n+1}$ because $(-1)^{2 n}=1$ for all $n \geq 0$. This is an alternating series $-(-1)^{n+1}$ alternates and $\frac{1}{2 n+1}$ is positive - with decreasing absolute values $-\frac{1}{2(n+1)+1}<\frac{1}{2 n+1}$ because $2(n+1)+1=2 n+3>2 n+1-$ and whose terms have a limit of $0-\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n+1}}{2 n+1}\right|=$ $\lim _{n \rightarrow \infty} \frac{1}{2 n+1}=0$ since $2 n+1 \rightarrow \infty$ as $n \rightarrow \infty$. It follows that it converges by the Alternating Series Test. Since the corresponding series of positive terms, $\sum_{n=0}^{\infty} \frac{1}{2 n+1}$, diverges by the Generalized p-Test because $p=1-0=1 \ngtr 1, \sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{2 n+1}$ converges conditionally.

When $x=1$, our series is $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2 n+1}=\sum_{n=0}^{\infty} \frac{(-1)^{n} 1^{2 n+1}}{2 n+1}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1}$. This is just the negative of the series for $x=-1$ (since $\left.(-1)^{n+1}=-(-1)^{n}\right)$, so it also converges conditionally.

It follows from the above that the interval of convergence of the series $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2 n+1}$ is $[-1,1]$.
3. Use the power series you obtained in 2 to find a series summing to π. How many terms of this series would you need to ensure that the partial sum is within 0.001 of π ? [4]

Hint: Hmm - what is $\arctan (1)$ equal to? For the second part, read up on the finer details of alternating series.

Solution. Following the hint, and using our power series for $\arctan (x)$:

$$
\frac{\pi}{4}=\arctan (1)=\sum_{n=0}^{\infty} \frac{(-1)^{n} 1^{2 n+1}}{2 n+1}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\cdots
$$

Multiplying both sides by 4 gives us:

$$
\pi=4 \sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1}=4\left(1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\cdots\right)=4-\frac{4}{3}+\frac{4}{5}-\frac{4}{7}+\frac{4}{9}-\cdots
$$

To estimate how many terms of the series are needed to ensure that the partial sum up to that point is within $0.001=\frac{1}{1000}$ of π we turn to the discussion at the end of $\S 11.4$ on how to do the like with any alternating series. To summarize: If $\sum_{n=0}^{\infty} a+n$ is an alternating series that passes the Alternating Series Test and hence converges to some number A, then A is always between any two consecutive partial sums $\sum_{n=0}^{N} a_{n}$ and $\sum_{n=0}^{N+1} a_{n}$ of the series. It follows that any partial sum $\sum_{n=0}^{N} a_{n}$ is within the absolute value of the next term, i.e. within $\left|a_{N+1}\right|$, of the sum A of the entire series.

We now apply this observation to our series summing to π. The N th partial sum $\sum_{n=0}^{N}(-1)^{n} \frac{4}{2 n+1}$ is guaranteed to be within $\left|(-1)^{N+1} \frac{4}{2(N+1)+1}\right|=\frac{4}{2 N+3}$ of π. We therefore need to find the (first, just to be efficient) N such that $\frac{4}{2 N+3} \leq \frac{1}{1000}$. This will happen if $2 N+3 \geq 4000$, which will happen if $N \geq \frac{4000-3}{2}=\frac{3997}{2}=1998.5$. The first integer meeting this condition is $N=1999$. We must therefore sum at least the first 1999 terms of the series to guarantee that the partial sum will be within 0.001 of π.

Note: The series you (hopefully!) obtained in $\mathbf{2}$ is often called Gregory's series after James Gregory, who rediscovered it in 1668. It had been previously discovered by Madhava of Sangamagrama ($c .1340-c .1425$), a mathematician and astronomer from Kerala in southern India. He also obtained the series formula for π in 3. Both the power series and the series formula for π were also rediscovered by Gottfried Leibniz in the 1670s.

