Mathematics 1120H - Calculus II: Integrals and Series
 Trent University, Winter 2019
 Solutions to Assignment \#5
 Serious Stuff

One can learn in class (or read in the textbook, or look it up elsewhere) that the harmonic series,

$$
\sum_{n=1}^{\infty} \frac{1}{n}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\cdots
$$

diverges, that is, doesn't add up to a real number. (Technically, this means that the limit of the partial sums, $\lim _{k \rightarrow \infty}\left[\sum_{n=1}^{k} \frac{1}{n}\right]$ doesn't exist.) On the other hand, the alternating harmonic series,

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\cdots
$$

converges, that is, it does add up to a real number. (Technically, this means that the limit of the partial sums, $\lim _{k \rightarrow \infty}\left[\sum_{n=1}^{k} \frac{(-1)^{n+1}}{n}\right]$, exists. The sum of the series is, by definition, the limit of the partial sums.) This is usually shown using the Alternating Series Test (see $\S 11.4$ in the textbook). Your first task will be to see whether a couple of other modifications of the harmonic series converge or not.

1. Does the series $1+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}+\frac{1}{8}-\frac{1}{9}+\cdots$, in which every third number in the harmonic series gets subtracted instead of added, converge or diverge? [3]
Solution. We will think of this series in terms of groups of three terms, which lets us write it a bit more compactly as $\sum_{k=0}^{\infty}\left[\frac{1}{3 k+1}-\frac{1}{3 k+2}+\frac{1}{3 k+3}\right]$. We will combine each group of three into a single term, which will put in a form we can more conveniently apply a suitable convergence test to. Observe that

$$
\begin{aligned}
\frac{1}{3 k+1}-\frac{1}{3 k+2}+\frac{1}{3 k+3} & =\frac{(3 k+2)(3 k+3)-(3 k+1)(3 k+3)+(3 k+1)(3 k+2)}{(3 k+1)(3 k+2)(3 k+3)} \\
& =\frac{9 k^{2}+15 k+6-9 k^{2}-12 k-3+9 k^{2}+9 k+2}{27 k^{3}+54 k^{2}+33 k+6} \\
& =\frac{9 k^{2}+12 k+5}{27 k^{3}+54 k^{2}+33 k+6},
\end{aligned}
$$

so $\sum_{k=0}^{\infty}\left[\frac{1}{3 k+1}-\frac{1}{3 k+2}+\frac{1}{3 k+3}\right]=\sum_{k=0}^{\infty} \frac{9 k^{2}+12 k+5}{27 k^{3}+54 k^{2}+33 k+6}$. Consider the latter form: since $p=3-2=1 \ngtr 1$ for this series, it follows by the Generalized p-Test that the series diverges.
2. Does the series $1-\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}+\frac{1}{7}-\frac{1}{8}-\frac{1}{9}+\cdots$, in which the last two of every group of three numbers in the harminic series get subtracted instead of added, converge or diverge? [3]
Solution. We will take the same approach we did in the solution to $\mathbf{1}$ and think of the series in terms of groups of three terms, writing it as $\sum_{k=0}^{\infty}\left[\frac{1}{3 k+1}-\frac{1}{3 k+2}-\frac{1}{3 k+3}\right]$.
Once again, we will combine each group of three into a single term, which will put in a form we can more conveniently apply a suitable convergence test to. Observe that

$$
\begin{aligned}
\frac{1}{3 k+1}-\frac{1}{3 k+2}-\frac{1}{3 k+3} & =\frac{(3 k+2)(3 k+3)-(3 k+1)(3 k+3)-(3 k+1)(3 k+2)}{(3 k+1)(3 k+2)(3 k+3)} \\
& =\frac{9 k^{2}+15 k+6-9 k^{2}-12 k-3-9 k^{2}-9 k-2}{27 k^{3}+54 k^{2}+33 k+6} \\
& =\frac{-9 k^{2}-6 k+1}{27 k^{3}+54 k^{2}+33 k+6}
\end{aligned}
$$

so $\sum_{k=0}^{\infty}\left[\frac{1}{3 k+1}-\frac{1}{3 k+2}-\frac{1}{3 k+3}\right]=\sum_{k=0}^{\infty} \frac{-9 k^{2}-6 k+1}{27 k^{3}+54 k^{2}+33 k+6}$. Consider the latter form: since $p=3-2=1 \ngtr 1$ for this series, it follows by the Generalized p-Test that the series diverges.

Note. The harmonic series and its variants are a very rich source of examples of why series can be tricky. The following movie poster, modified by some University of Toronto engineers, kind of makes this point ... :-)

Your second task is to do a bit of algebra with power series, which are basically like polynomials of infinite degree.
3. Suppose x is a variable and a_{n} for $n \geq 0$ are constants such that

$$
\begin{aligned}
\sum_{n=0}^{\infty} a_{n} x^{n} & =a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots \\
& =\left(1+x+x^{2}+x^{3}+\cdots\right)^{2}=\left(\sum_{n=0}^{\infty} x^{n}\right)^{2}
\end{aligned}
$$

Find a formula for a_{n} in terms of n. [4]
Hint: Work out the first few a_{n} s by multiplying out $\left(1+x+x^{2}+x^{3}+\cdots\right)^{2}$ and then collecting like terms, and look for a pattern.

Solution. Let's follow the hint:

$$
\begin{aligned}
\left(1+x+x^{2}+x^{3}+\cdots\right)^{2}= & \left(1+x+x^{2}+x^{3}+\cdots\right)\left(1+x+x^{2}+x^{3}+\cdots\right) \\
= & 1\left(1+x+x^{2}+x^{3}+\cdots\right) \\
& +x\left(1+x+x^{2}+x^{3}+\cdots\right) \\
& +x^{2}\left(1+x+x^{2}+x^{3}+\cdots\right) \\
& +x^{3}\left(1+x+x^{2}+x^{3}+\cdots\right) \\
& \vdots \\
= & 1+x+x^{2}+x^{3}+x^{4}+x^{5}+\cdots \\
& +x+x^{2}+x^{3}+x^{4}+x^{5}+\cdots \\
& +x^{2}+x^{3}+x^{4}+x^{5}+\cdots \\
& +x^{3}+x^{4}+x^{5}+\cdots \\
& \ddots
\end{aligned}
$$

The coefficient of x^{n} in the final series is $n+1$, i.e. $a_{n}=n+1$ for $n \geq 0$.

