Mathematics 1120H - Calculus II: Integrals and Series

Trent University, Winter 2019

Solutions to Assignment \#4

 Surface Area ErrorIf you look it up, you will find that the surface area of a sphere of radius r is $S A=4 \pi r^{2}$. The following calculation comes to a different conclusion.

We will compute the surface area of the sphere by adding up (by integrating) the perimeters of horizontal cross-sections of the sphere, analogously to how we can [correctly!] find the volume of a sphere by adding up (by integrating) the areas of horizontal cross sections of the sphere.

The equation of a sphere of radius r centred at the origin is $x^{2}+y^{2}+z^{2}=r^{2}$. The cross-section of this sphere for a fixed z with $-r \leq z \leq r$ is a circle with equation $x^{2}+y^{2}=r^{2}-z^{2}$ and hence radius $R(z)=\sqrt{r^{2}-z^{2}}$ and perimeter $C(z)=2 \pi R(z)=2 \pi \sqrt{r^{2}-z^{2}}$. Therefore the surface area of the sphere should be $\int_{-r}^{r} C(z) d z=\int_{-r}^{r} 2 \pi \sqrt{r^{2}-z^{2}} d z$. Let's see what happens when we compute this integral. We will substitute $z=r \sin (\theta)$, so $d z=r \cos (\theta) d \theta$, and change the limits
 as we go along: $\begin{array}{ccc}z & -r & r \\ \theta & -\pi / 2 & \pi / 2\end{array}$.

$$
\begin{aligned}
\int_{-r}^{r} C(z) d z & =\int_{-r}^{r} 2 \pi \sqrt{r^{2}-z^{2}} d z=2 \pi \int_{-\pi / 2}^{\pi / 2} \sqrt{r^{2}-r^{2} \sin ^{2}(\theta)} r \cos (\theta) d \theta \\
& =2 \pi \int_{-\pi / 2}^{\pi / 2} \sqrt{r^{2} \cos ^{2}(\theta)} r \cos (\theta) d \theta=2 \pi \int_{-\pi / 2}^{\pi / 2} r^{2} \cos ^{2}(\theta) d \theta \\
& =2 \pi r^{2} \int_{-\pi / 2}^{\pi / 2} \frac{1}{2}(1+\cos (2 \theta)) d \theta=\left.\pi r^{2}\left(\theta+\frac{1}{2} \sin (2 \theta)\right)\right|_{-\pi / 2} ^{\pi / 2} \\
& =\pi r^{2}\left(\frac{\pi}{2}+\frac{1}{2} \cdot 0\right)-\pi r^{2}\left(-\frac{\pi}{2}+\frac{1}{2} \cdot 0\right)=\pi^{2} r^{2}
\end{aligned}
$$

This is only true in those universes where $\pi=4 \ldots$

1. Explain what is wrong in the calculation above. [4]

Solution. Read the solution to question 2 below first. The main difference between it and the calculation above is in the setup: the computation above does not take arc-length into account and the solution to $\mathbf{2}$ below does. A little more generally, the calculation above does not fully account for the slope of the curve being revolved when computing the surface area, while the arc-length based calculation does.

Why does this matter? It matters because the length of a small bit of the curve being revolved matters: the longer it is, that is, the more $d y$ you have per $d x$ - i.e. the steeper the slope, the more area it contributes when revolved. (See Figure 9.10.4 in the text, and the discussion before it on pages 234-235, for a detailed explanation.) The calculation given above simply doesn't take this fact into account.
2. Use calculus to compute the surface area of a sphere of radius r correctly. [6]

Solution. This is a little easier if we find the surface area of the upper hemisphere of a sphere of radius r first, and then double it to get the surface area of the entire sphere. The upper hemisphere of a sphere of radius r can be obtained by revolving the quarter circle $y=\sqrt{r^{2}-x^{2}}$, for $0 \leq x \leq r$, about the y-axis.

The formula for the surface area of a surface obtained by revolving a curve $y=f(x)$, $a \leq x \leq b$, about the y-axis - $\S 9.10$ of the textbook, on p .236 - is:

$$
S A=\int_{a}^{b} 2 \pi x \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x
$$

In our case $f(x)=\sqrt{r^{2}-x^{2}}$, so

$$
f^{\prime}(x)=\frac{d}{d x} \sqrt{r^{2}-x^{2}}=\frac{1}{2 \sqrt{r^{2}-x^{2}}} \cdot \frac{d}{d x}\left(r^{2}-x^{2}\right)=\frac{-2 x}{2 \sqrt{r^{2}-x^{2}}}=\frac{-x}{\sqrt{r^{2}-x^{2}}},
$$

with $a=0$ and $b=r$. It follows that the surface area of the upper hemispher of radius r is given by:

$$
\begin{aligned}
S A & =\int_{0}^{r} 2 \pi x \sqrt{1+\left[\frac{-x}{\sqrt{r^{2}-x^{2}}}\right]^{2}} d x=2 \pi \int_{0}^{r} x \sqrt{1+\frac{x^{2}}{r^{2}-x^{2}}} d x \\
& =2 \pi \int_{0}^{r} x \sqrt{\frac{r^{2}-x^{2}+x^{2}}{r^{2}-x^{2}}} d x=2 \pi \int_{0}^{r} x \sqrt{\frac{r^{2}}{r^{2}-x^{2}}} d x=2 \pi \int_{0}^{r} x \frac{r}{\sqrt{r^{2}-x^{2}}} d x
\end{aligned}
$$

Substitute $u=r^{2}-x^{2}$, so $d u=-2 x d x$ and thus $2 x d x=(-1) d u$,
and change limits as we go along: $\begin{array}{ccc}x & 0 & r \\ u & r^{2} & 0\end{array}$
$=\pi r \int_{r^{2}}^{0} \frac{1}{\sqrt{u}}(-1) d u=\pi r \int_{0}^{r^{2}} u^{-1 / 2} d u=\left.\pi r \cdot \frac{u^{1 / 2}}{1 / 2}\right|_{0} ^{r^{2}}=\left.2 \pi r \cdot u^{1 / 2}\right|_{0} ^{r^{2}}$
$=2 \pi r\left(r^{2}\right)^{1 / 2}-2 \pi r 0^{1 / 2}=2 \pi r \cdot r-0=2 \pi r^{2}$
Since the surface area of the upper hemisphere is, by symmetry, half the surface area of the entire sphere, the surface area of the entire sphere is $2 \cdot 2 \pi r^{2}=4 \pi r^{2}$.

