Mathematics 1120H - Calculus II: Integrals and Series
 Trent University, Winter 2019

Solution to Assignment \#2
 Plumbing Volume

1. Two cylinders, each of radius 1 , intersect such that their axes of symmetry meet at right angles. What is the volume of the region common to both cylinders? [10]

Solution. We first set this up in three dimensions with the usual Cartesian coordinates. The x-, y-, and z-axes meet at right angles and we will use the first two as the axes of symmetry of the two cylinders. The cylinder of radius 1 whose axis of symmetery is the x-axis is given by the equation $y^{2}+z^{2}=1$ in three dimensions (it is swept out by the circle with that equation in the $y z$-plane as that circle is moved parallel to the x-axis); similarly, the cylinder of radius 1 whose axis of symmetry is the y-axis is given by the equation $x^{2}+z^{2}=1$ - (it is swept out by the circle with that equation in the $x z$-plane as that circle is moved parallel to the y-axis). The (interiors of the) two cylinders intersect in a region containing the origin. Here is picture of the upper half of the region in question, drawn by Maple.

```
> plot3d(min(1-x^2,1-y^2),x=-1..1,y=-1..1,axes=boxed)
```


(The min function was used to show just the region cut off by both cylinders.)

Looking at the plot, it is not hard to guess that the cross-sections of the region parallel to the $x y$-plane, i.e. those with a fixed value of z, are rectangles. In fact, because the definition of the region is symmetric in terms of x and y, these cross-sections are squares. If we solve the equations of the two cylinders for x and y, respectively, using the same value of z we get that $x= \pm \sqrt{1-z^{2}}$ and $y= \pm \sqrt{1-z^{2}}$. This means that over the interior of the cross-section we have both $-\sqrt{1-z^{2}} \leq x \leq+\sqrt{1-z^{2}}$ and $-\sqrt{1-z^{2}} \leq y \leq+\sqrt{1-z^{2}}$; it follows that the length of the sides parallel to each axis of the cross-section are each of length $\sqrt{1-z^{2}}-\left(-\sqrt{1-z^{2}}\right)=2 \sqrt{1-z^{2}}$. Thus the area of the cross-section of the region for a fixed value of z is $A(z)=2 \sqrt{1-z^{2}} \cdot 2 \sqrt{1-z^{2}}=4\left(1-z^{2}\right)$.

Notice that the possible values of z over the region are $-1 \leq z \leq 1$; these are the minimum to the maximum values of z for a cylinder of radius 1 centered on the x - or y-axis.

Having waded through the set-up, the integral for the volume of the solid is pretty easy to compute. As usual, we integrate the areas of cross-sections to get the volume:

$$
\begin{aligned}
V & =\int_{-1}^{1} A(z) d z=\int_{-1}^{1} 4\left(1-z^{2}\right) d z=4 \int_{-1}^{1}\left(1-z^{2}\right)=\left.4\left(z-\frac{z^{3}}{3}\right)\right|_{-1} ^{1} \\
& =4\left(1-\frac{1^{3}}{3}\right)-4\left((-1)-\frac{(-1)^{3}}{3}\right)=4 \cdot \frac{2}{3}-4 \cdot\left(-\frac{2}{3}\right)=\frac{8}{3}+\frac{8}{3}=\frac{16}{3}
\end{aligned}
$$

