
Mathematics 1120H – Calculus II: Integrals and Series
Trent University, Winter 2019

Solutions to Assignment #1
A little bit about the Riemann integral

Due on Friday, 18 January.

Recall from MATH 1110H [especially Assignment #9], class, or the textbook, that

the definite integral
∫ b
a
f(x) dx essentially gives the signed or weighted area of the region

between y = f(x) and the x-axis, where area above the x-axis is added and area below
the x-axis is subtracted. The definite integral is usually defined in terms of limits of
Riemann sums, but the full general definition is pretty cumbersome to work with. This
assignment is meant to give you a little bit of practice with it and give an inkling as to why
simplifications like the Right-Hand Rule are not quite enough to justify all the properties
of definite integrals.

First, here is the aforementioned Right-Hand Rule, which will, in principle, properly

compute
∫ b
a
f(x) dx for most commonly encountered functions.

Right-Hand Rule. Suppose f(x) is defined for all x in [a, b] and is continuous at all but
finitely many points of [a, b]. Then:∫ b

a

f(x) dx = lim
n→∞

[
n∑
i=1

b− a
n

f

(
a+ i · b− a

n

)]

The idea here is that we divide up the interval [a, b] into n subintervals of equal
width b−a

n , so the ith subinterval, going from left to right and where 1 ≤ i ≤ n, will

be
[
(i− 1) · b−an , i · b−an

]
. Each subinterval serves as the base of a rectangle of height

f
(
a+ i · b−an

)
, which must then have area b−a

n f
(
a+ i · b−an

)
. The sum of the areas of

these rectangles, the nth Right-Hand Rule sum for
∫ b
a
f(x) dx, approximates the area

computed by
∫ b
a
f(x) dx. (It’s called the Right-Hand Rule because it uses the right-hand

endpoint of each subinterval to evaluate f(x) at to determine the height of the rectangle
which has that subinterval as a base.) As we increase n and so shrink the width of the
rectangles we get better and better approximations to the definite integral.

1. Use the Right-Hand Rule to show that

∫ a

0

ex dx = ea. [3]

Hint. You’ll need to do some algebra and may want to look up geometric series (Example
11.2.1 in the textbook) and their summation formulas if you don’t remember them.

Solution. We plug the interval [0, a] and the function f(x) = ex into the Right-Hand
Rule formula and chug away:∫ a

0

ex dx = lim
n→∞

[
n∑
i=1

a− 0

n
· e0+i·

a−0
n

]
= lim
n→∞

[
n∑
i=1

a

n
· eia/n

]

= lim
n→∞

[
a

n

n∑
i=1

eia/n

]
= lim
n→∞

[
a

n

n∑
i=1

(
ea/n

)i]
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Per the hint, observe that

n∑
i=1

(
ea/n

)i
= ea/n +

(
ea/n

)2
+
(
ea/n

)3
+ · · ·+

(
ea/n

)n
is a geometric series – i.e. a sum of the form k + kx + kx2 + · · · kxm – with first term
k = ea/n, common ratio x = ea/n, and final power m = n− 1. As noted in Example 11.2.1
of the text, this sum is equal to :

k
xm+1 − 1

x− 1
= ea/n

(
ea/n

)n−1+1 − 1

ea/n − 1
= ea/n

(
ea/n

)n − 1

ea/n − 1
= ea/n

ea − 1

ea/n − 1

We replace the sum by this formula in the limit, so:∫ a

0

ex dx = lim
n→∞

[
a

n

n∑
i=1

(
ea/n

)i]
= lim
n→∞

[
a

n
ea/n

ea − 1

ea/n − 1

]
To make it a easier to evaluate we substitute h = a

n in the limit, which also changes it
from a limit as n→∞ to a limit as h→ 0. It follows, with a bit of help from the rules for
manipulating limits, including l’Hôpital’s Rule, that:∫ a

0

ex dx = lim
n→∞

[
a

n
ea/n

ea − 1

ea/n − 1

]
= lim
h→0

[
heh

ea − 1

eh − 1

]
= (ea − 1) lim

h→0

[
eh

h

eh − 1

]
= (ea − 1)

(
lim
h→0

eh
)(

lim
h→0

h

eh − 1

)
= (ea − 1)

(
e0
)(

lim
h→0

h

eh − 1

→ 0
→ 0

)
= (ea − 1) (1)

(
lim
h→0

d
dhh

d
dh (eh − 1)

)
= (ea − 1)

(
lim
h→0

1

eh

)
= (ea − 1)

(
1

e0

)
= (ea − 1)

(
1

1

)
= ea − 1 �

2. Suppose f(x) is a function which is defined and continuous – and hence ought to be
integrable – on all of R. Explain why we would have a problem justifying∫ 0

−1
f(x) dx+

∫ √2

0

f(x) dx =

∫ √2

−1
f(x) dx

if we used the Right-Hand Rule (or any rule that relies on subdividing [a, b] into equal

subintervals) as the actual definition of
∫ b
a
f(x) dx. [3]

Hint. It matters here that
√

2 is irrational.

Solution. The problem here is that the Right-Hand Rule relies on partitions in which
each subinterval is of equal width. To make it easy to combine the Right-Hand Rule limits
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for
∫ 0

−1 f(x) dx and
∫√2

0
f(x) dx into a Right-Hand Rule limit for

∫√2

−1 f(x) dx, you have
to be able to combine suitable Right-Hand Rule sums for the first two integrals into a
Right-Hand Rule sum for the third. However, if you partition [−1, 0] into n equal pieces,
each will have width 1

n , and if you partition
[
0,
√

2
]

into k equal pieces, each will have

width
√
2
k . There is no way 1

n =
√
2
k , no matter what integers n and k happen to be: if it

is otherwise, then we would have
√

2 = k
n , which would mean that

√
2 was rational, and it

isn’t.

There is a similar problem splitting up a Right-Hand Rule sum for
∫√2

−1 f(x) dx into

Right-Hand Rule sums for
∫ 0

−1 f(x) dx and
∫√2

0
f(x) dx. No matter how many pieces

of equal width you divide
[
−1,
√

2
]

into, all of the partition points (except −1) will be
irrational, which means that 0 can’t be partition point . . .

Similar problems occur for any would-be definition of the definite integral that relies
on partitions of equal width. �

The full definition of the Riemann integral uses the same basic idea of approximating
the area under a curve by rectangles, but it allows for these rectangles to have differing
widths and heights that are computed by evaluating the function at arbitrary points in
the bases of the rectangles. This, sadly, means that we need some preliminary definitions
and notation.

Partitions. If [a, b] is a (closed finite) interval, then a partition of [a, b] is a set of
subintervals [x0, x1], [x1, x2], . . . , [xn−1, xn], of [a, b] where n ≥ 1 and a = x0 < x1 < · · · <
xn−1 < xn = b. (Note that different partitions may divide up [a, b] into different numbers
of subintervals n.) For the sake of brevity, we will often denote such a partition by {xi}.

If {xi} is a partition of [a, b], its norm ‖{xi}‖ is the maximum width of a subinterval
of the partition, i.e. ‖{xi}‖ = max {xi − xi−1 | 1 ≤ i ≤ n }.

A tagged partition of [a, b] is a partition {xi} of [a, b] together with some choice of
points x∗i for each i with 1 ≤ i ≤ n, where the only restriction is that xi−1 ≤ x∗i ≤ xi for
each i. For the sake of brevity, we will often denote a tagged partition by {xi}∗

Suprema. If A is a set of real numbers with an upper bound u, i.e. a ≤ u for all a ∈ A,
then A has a least upper bound or supremum, often denoted by sup(A), which is an upper
bound of A and such that sup(A) ≤ u for every other upper bound u of A. Note that if
A is finite, then sup(A) = max { a | a ∈ A } ∈ A, but this doesn’t have to be true if A is
infinite. For example, sup ( (0, 1) ) = 1 /∈ (0, 1).

The Riemann Integral. If f(x) is a function defined on [a, b] and {xi}∗ is a tagged

partition of [a, b], the corresponding Riemann sum is R
(
f, {xi}∗

)
=

n∑
i=1

(xi − xi−1) f (x∗i ).

This is just the sum of the areas of n rectangles, where the base of the ith rectangle is
the subinterval [xi−1, xi] and its height is f (x∗i ). Note that Right-Hand Rule sums are
Riemann sums for certain very special tagged partitions.

If f(x) is a function defined on [a, b], then its Riemann integral on [a, b] is∫ b

a

f(x) dx = lim
δ→0+

sup
({
R
(
f, {xi}∗

)
| ‖{xi}‖ < δ

})
,
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provided that this limit exists. If the limit does exist, then f(x) is said to be Riemann
integrable on [a, b]. Actually working with this definition is usually pretty hard because
the definitional pile-up leading up to it means that the limit is very complicated. To make
it worse, in practice you often have to go to the ε–δ definition of limits when working with
it, too.

3. Suppose f(x) is a function which is Riemann integrable on R. Explain why the
definition of the Riemann integral does justify

∫ 0

−1
f(x) dx+

∫ √2

0

f(x) dx =

∫ √2

−1
f(x) dx .

Your explanation should be informal, but as complete and precise as you can. [3]

Solution. The definitional pile-up that is the general Riemann integral is pretty compli-
cated, but only one feature really matters here for us: the fact that the partitions used in
defining the Riemann integral may have subintervals that are not of equal width. This fact
means that a partition for [−1, 0] and a partition for

[
0,
√

2
]

can simply be stuck together

to get a partition for
[
−1,
√

2
]
. Similarly, it is very easy to take a partition of

[
−1,
√

2
]

and divide it into partitions for each of [−1, 0] and
[
0,
√

2
]
; all you have to do (if 0 isn’t

already a partition point) is subdivide whatever subinterval 0 is in at 0. It follows, though
proving this does require wading through the rest of the definitional pile-up at considerable

length, that the limits of sums defining
∫ 0

−1 f(x) dx and
∫√2

0
f(x) dx equal the limit of sums

defining
∫√2

−1 f(x) dx. �

0. Please give your name! No name, no mark . . . [1]

Comment. I really, really, hope you got this one right! :-)
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