Mathematics 1120 H - Calculus II: Integrals and Series

Trent University, Winter 2019

Solutions to the Quizzes

Quiz \#1. Wednesday, 20 June. [10 minutes]
Compute each of the following integrals.

1. $\int_{0}^{\pi / 2} \cos (x) \sqrt{\sin (x)} d x$ [3]
2. $\int \frac{1}{x \ln (x)} d x[2]$

Solutions. 1. We will use the substitution $u=\sin (x)$, so $\frac{d u}{d x}=\cos (x)$ and hence $d u=\cos (x) d x$, and change the limits as we go along: $\begin{array}{ccc}x & 0 & \pi / 2 \\ u & 0 & 1\end{array}$, since $\sin (0)=0$ and $\sin (\pi / 2)=1$.

$$
\begin{aligned}
\int_{0}^{\pi / 2} \cos (x) \sqrt{\sin (x)} d x & =\int_{0}^{1} \sqrt{u} d u=\int_{0}^{1} u^{1 / 2} d u=\left.\frac{u^{3 / 2}}{3 / 2}\right|_{0} ^{1}=\left.\frac{2}{3} u^{3 / 2}\right|_{0} ^{1} \\
& =\frac{2}{3} \cdot 1^{3 / 2}-\frac{2}{3} \cdot 0^{3 / 2}=\frac{2}{3}-0=\frac{2}{3}
\end{aligned}
$$

2. We will use the substitution $w=\ln (x)$, so $\frac{d w}{d x}=\frac{1}{x}$ and hence $d w=\frac{1}{x} d x$.

$$
\int \frac{1}{x \ln (x)} d x=\int \frac{1}{w} d w=\ln (w)+C=\ln (\ln (x))+C
$$

Quiz \#2. Friday, 25 January. [10 minutes]

1. Compute $\int_{-1}^{0} x^{2} e^{x+1} d x$. [5]

Solution. We will use integration by parts twice, the first time with $u=x^{2}$ and $v^{\prime}=e^{x+1}$, so that $u^{\prime}=2 x$ and $v=\int e^{x+1} d x=\int e \cdot e^{x} d x=e \cdot e^{x}=e^{x+1}$.

$$
\int_{-1}^{0} x^{2} e^{x+1} d x=\left.x^{2} e^{x+1}\right|_{-1} ^{0}-\int_{-1}^{0} 2 x e^{x+1} d x=0^{2} e^{0+1}-(-1)^{2} e^{-1+1}-2 \int_{-1}^{0} x e^{x+1} d x
$$

We use parts again with $a=x$ and $b^{\prime}=e^{x+1}$, so $a^{\prime}=1$ and $b=e^{x+1}$.

$$
\begin{aligned}
& =0-1 \cdot e^{0}-2\left[\left.x e^{x+1}\right|_{-1} ^{0}-\int_{-1}^{0} 1 e^{x+1} d x\right] \\
& =-1 \cdot 1-2\left[0 e^{0+1}-(-1) e^{-1+1}-\left.e^{x+1}\right|_{-1} ^{0}\right] \\
& =-1-2\left[0-(-1) e^{0}-\left(e^{0+1}-e^{-1+1}\right)\right]=-1-2\left[1 \cdot 1-\left(e^{1}-e^{0}\right)\right] \\
& =-1-2[1-(e-1)]=-1-2[2-e]=-1-2 \cdot 2+2 e=2 e-5
\end{aligned}
$$

Quiz \#3. Friday, 32 Jantary 1 February. [12 minutes]
Compute each of the following integrals.

1. $\int_{0}^{\pi / 4} \tan ^{2}(x) d x[2.5]$
2. $\int_{0}^{\pi / 2} \cos ^{3}(x) \sin ^{2}(x) d x$ [2.5]

Solutions. 1. (Trig identity) We will use the trigonometric identity $\tan ^{2}(x)=\sec ^{2}(x)-1$.

$$
\begin{aligned}
\int_{0}^{\pi / 4} \tan ^{2}(x) d x & =\int_{0}^{\pi / 4}\left(\sec ^{2}(x)-1\right) d x=\left.(\tan (x)-x)\right|_{0} ^{\pi / 4} \\
& =\left(\tan \left(\frac{\pi}{4}\right)-\frac{\pi}{4}\right)-(\tan (0)-0)=\left(1-\frac{\pi}{4}\right)-(0-0)=1-\frac{\pi}{4}
\end{aligned}
$$

1. (Reduction formula) We will apply the reduction formula

$$
\int \tan ^{k}(x) d x=\frac{1}{k-1} \tan ^{k-1}(x)-\int \tan ^{k-2}(x) d x .
$$

Here goes:

$$
\begin{aligned}
\int_{0}^{\pi / 4} \tan ^{2}(x) d x & =\left.\frac{1}{2-1} \tan ^{2-1}(x)\right|_{0} ^{\pi / 4}-\int_{0}^{\pi / 4} \tan ^{2-2}(x) d x \\
& =\left.\tan (x)\right|_{0} ^{\pi / 4}-\int_{0}^{\pi / 4} \tan ^{0}(x) d x=\left[\tan \left(\frac{\pi}{4}\right)-\tan (0)\right]-\int_{0}^{\pi / 4} 1 d x \\
& =[1-0]-\left.x\right|_{0} ^{\pi / 4}=1-\left[\frac{\pi}{4}-0\right]=1-\frac{\pi}{4}
\end{aligned}
$$

2. (Trig identity and substitution) We will use the trigonometric identityt $\cos ^{2}(x)=$ $1-\sin ^{2}(x)$ and then substitute $u=\sin (x)$, so $d u=\cos (x) d x$, and change limits as we go along: $\begin{array}{ccc}x & 0 & \pi / 2 \\ u & 0 & 1\end{array}$.

$$
\begin{aligned}
\int_{0}^{\pi / 2} \cos ^{3}(x) \sin ^{2}(x) d x & =\int_{0}^{\pi / 2} \cos ^{2}(x) \cos (x) \sin ^{2}(x) d x \\
& =\int_{0}^{\pi / 2}\left(1-\sin ^{2}(x)\right) \sin ^{2}(x) \cos (x) d x=\int_{0}^{1}\left(1-u^{2}\right) u^{2} d u \\
& =\int_{0}^{1}\left(u^{2}-u^{4}\right) d u=\left.\left(\frac{u^{3}}{3}-\frac{u^{5}}{5}\right)\right|_{0} ^{1} \\
& =\left(\frac{1^{3}}{3}-\frac{1^{5}}{5}\right)-\left(\frac{0^{3}}{3}-\frac{0^{5}}{5}\right)=\left(\frac{1}{3}-\frac{1}{5}\right)-(0-0) \\
& =\left(\frac{5}{15}-\frac{3}{15}\right)-0=\frac{2}{15}
\end{aligned}
$$

2. (Trig identity and reduction formula) We will apply the trig identity $\left.\sin ^{2} x=1-\cos ^{(} x\right)$ and the reduction formula

$$
\int \cos ^{k}(x) d x=\frac{1}{k} \cos ^{k-1}(x) \sin (x)+\frac{k-1}{k} \int \cos ^{k-2}(x) d x .
$$

Here goes:

$$
\begin{aligned}
\int_{0}^{\pi / 2} \cos ^{3}(x) \sin ^{2}(x) d x= & \int_{0}^{\pi / 2} \cos ^{3}(x)\left(1-\cos ^{2}(x)\right) d x=\int_{0}^{\pi / 2}\left(\cos ^{3}(x)-\cos ^{5}(x)\right) d x \\
= & \int_{0}^{\pi / 2} \cos ^{3}(x) d x-\int_{0}^{\pi / 2} \cos ^{5}(x) d x \\
= & \int_{0}^{\pi / 2} \cos ^{3}(x) d x-\left[\left.\frac{1}{5} \cos ^{4}(x) \sin (x)\right|_{0} ^{\pi / 2}+\frac{4}{5} \int_{0}^{\pi / 2} \cos ^{3}(x) d x\right] \\
= & \int_{0}^{\pi / 2} \cos ^{3}(x) d x-\left.\frac{1}{5} \cos ^{4}(x) \sin (x)\right|_{0} ^{\pi / 2}-\frac{4}{5} \int_{0}^{\pi / 2} \cos ^{3}(x) d x \\
= & \frac{1}{5} \int_{0}^{\pi / 2} \cos ^{3}(x) d x-\left.\frac{1}{5} \cos ^{4}(x) \sin (x)\right|_{0} ^{\pi / 2} \\
= & \frac{1}{5}\left[\left.\frac{1}{3} \cos ^{2}(x) \sin (x)\right|_{0} ^{\pi / 2}+\frac{2}{3} \int_{0}^{\pi / 2} \cos (x) d x\right] \\
= & \frac{1}{5}\left[\frac{1}{5}\left[\cos ^{4}\left(\frac{\pi}{2}\right) \sin \left(\frac{\pi}{2}\right)-\left.\cos ^{2}(x) \sin (x)\right|_{0} ^{\pi / 2}+\frac{2}{3} \sin (0)\right]\right. \\
= & \frac{1}{5}\left[\frac{1}{3}\left(\cos ^{2}\left(\frac{\pi}{2}\right) \sin \left(\frac{\pi}{2}\right)-\cos ^{2}(0) \sin (0)\right)\right. \\
& \left.+\frac{2}{3}\left(\sin ^{\pi / 2}\left(\frac{\pi}{2}\right)-\sin (0)\right)\right]-\frac{1}{5} \cdot 0 \\
= & \frac{1}{5}\left[\frac{1}{3}\left(0^{4} \cdot 1-1-1^{4} \cdot 0\right]\right. \\
= & \frac{1}{5} \cdot \frac{2}{3}=\frac{2}{15} \quad \square
\end{aligned}
$$

Note. The truly gung-ho can work out how to use the reduction formula(s) for mixed powers of $\sin (x)$ and $\cos (x)$ to solve question 2 .

Quiz \#4. Friday, 8 February. [10 minutes]

1. Compute $\int \frac{1}{\sqrt{4 x^{2}+8 x+8}} d x$. [5]

Solution. Algebra, substitution, and trig substitution, oh my!

$$
\begin{aligned}
\int \frac{1}{\sqrt{4 x^{2}+8 x+8}} d x & =\int \frac{1}{\sqrt{4\left(x^{2}+2 x+2\right)}} d x=\int \frac{1}{2 \sqrt{x^{2}+2 x+1+1}} d x \\
& =\frac{1}{2} \int \frac{1}{\sqrt{(x+1)^{2}+1}} d x \quad \text { Substitute } u=x+1, \text { so } d u=d x \\
& =\frac{1}{2} \int \frac{1}{\sqrt{u^{2}+1}} d u \quad \text { Substitute } u=\tan (\theta), \text { so } d u=\sec ^{2}(\theta) d \theta \\
& =\frac{1}{2} \int \frac{1}{\sqrt{\tan ^{2}(\theta)+1}} \sec ^{2}(\theta) d \theta=\frac{1}{2} \int \frac{\sec ^{2}(\theta)}{\sqrt{\sec ^{2}(\theta)}} d \theta \\
& =\frac{1}{2} \int \frac{\sec ^{2}(\theta)}{\sec (\theta)} d \theta=\frac{1}{2} \int \sec (\theta) d \theta=\frac{1}{2} \ln (\tan (\theta)+\sec (\theta))+C \\
& =\frac{1}{2} \ln \left(u+\sqrt{u^{2}+1}\right)+C=\frac{1}{2} \ln \left((x+1)+\sqrt{(x+1)^{2}+1}\right)+C
\end{aligned}
$$

The truly gung-ho can rewrite the final expression as $\frac{1}{2} \ln \left((x+1)+\sqrt{x^{2}+2 x+2}\right)+C$, or even as $\ln \left(\sqrt{(x+1)+\sqrt{x^{2}+2 x+2}}\right)+C$, but that's probably more trouble than it's worth ...

Quiz \#5. Friday, 15 February. [17 minutes]

1. Compute $\int \frac{x^{2}+x+5}{\left(x^{2}+4\right)(x+1)} d x$. [5]

Solution. The integrand is a rational function, so we run through the usual partial fractions checklist:
i. Since the numerator of the integrand has degree two, which is less than the degree three of the denominator, we can proceed directly to factoring the denominator.
ii. The denominator, $\left(x^{2}+4\right)(x+1)$, comes in at least partially factored form. As $x^{2}+4 \geq 4>0$ for all x, the factor $x^{2}+4$ has no roots and hence is an irreducible quadratic, which means that the denominator came fully factored.
iii. The partial fraction decomposition of $\frac{x^{2}+x+5}{\left(x^{2}+4\right)(x+1)}$ is therefore $\frac{A x+B}{x^{2}+4}+\frac{C}{x+1}$ for some constants A, B, and C. Since

$$
\begin{aligned}
\frac{x^{2}+x+5}{\left(x^{2}+4\right)(x+1)} & =\frac{A x+B}{x^{2}+4}+\frac{C}{x+1}=\frac{(A x+B)(x+1)+C\left(x^{2}+4\right)}{\left(x^{2}+4\right)(x+1)} \\
& =\frac{A x^{2}+A x+B x+B+C x^{2}+4 C}{\left(x^{2}+4\right)(x+1)} \\
& =\frac{(A+C) x^{2}+(A+B) x+(B+4 C)}{\left(x^{2}+4\right)(x+1)},
\end{aligned}
$$

it follows by comparing coefficients of like powers of x in the numerators at the beginning and the end above that $A+C=1, A+B=1$, and $B+4 C=5$.
$i v$. We solve the linear equations obtained in the previous step for A, B, and C. The first two equations tell us that $C=1-A=B$. Plugging this into the third equation gives $B+4 C=B+4 B=5 B=5$, and so $B=1$, from which it now follows that $C=B=1$ and $A=1-B=1-1=0$. Thus $\frac{x^{2}+x+5}{\left(x^{2}+4\right)(x+1)}=\frac{1}{x^{2}+4}+\frac{1}{x+1}$.
v. Finally, we integrate:

$$
\begin{aligned}
\int \frac{x^{2}+x+5}{\left(x^{2}+4\right)(x+1)} d x= & \int\left(\frac{1}{x^{2}+4}+\frac{1}{x+1}\right) d x=\int \frac{1}{x^{2}+4} d x+\int \frac{1}{x+1} d x \\
& \text { Substitute } x=2 u, \text { so } d x=2 d u, \text { in the first integral, } \\
& \text { and } w=x+1, \text { so } d x=d w, \text { in the second integral. } \\
= & \int \frac{1}{(2 u)^{2}+4} 2 d u+\int \frac{1}{w} d w=\int \frac{2}{4 u^{2}+4} d u+\ln (w) \\
= & \frac{2}{4} \int \frac{1}{u^{2}+1} d u+\ln (w)=\frac{1}{2} \arctan (u)+\ln (w)+C \\
& \quad \text { Substituting back, note that } u=\frac{x}{2} \text { and } w=x+1 . \\
= & \frac{1}{2} \arctan \left(\frac{x}{2}\right)+\ln (x+1)+C
\end{aligned}
$$

Quiz \#6. Friday, 8 March. [12 minutes]

1. Consider the region below $y=\sqrt{x}$ and above $y=0$ for $0 \leq x \leq 1$. Find the volume of the solid obtained by revolving this region about the y-axis. [5]
Solution. (Using cylindrical shells.) Since we are revolving the region about a vertical line, we should use x, the horizontal variiable, if we intend to use the method of cylindrical shells. The cylindrical shell at x has radius equal to the distance from x to the y-axis (i.e. $x=0$), so $r=x-0=x$, and height equal to the distance between $y=\sqrt{x}$ and $y=0$, so $h=\sqrt{x}-0=\sqrt{x}$. It follows that the volume of the solid is given by:

$$
\begin{aligned}
V & =\int_{0}^{1} 2 \pi r h d x=\int_{0}^{1} 2 \pi x \sqrt{x} d x=2 \pi \int_{0}^{1} x^{3 / 2} d x=\left.2 \pi \frac{x^{5 / 2}}{5 / 2}\right|_{0} ^{1}=\left.\frac{4}{5} \pi x^{5 / 2}\right|_{0} ^{1} \\
& =\frac{4}{5} \pi \cdot 1^{5 / 2}-\frac{4}{5} \pi \cdot 0^{5 / 2}=\frac{4}{5} \pi-0=\frac{4}{5} \pi \quad \square
\end{aligned}
$$

(Using washers.) Since we are revolving the region about a vertical line, we should use y, the vertical variiable, if we intend to use the disk/washer method. The washer at y has an outer radius given by the difference between $x=1$, the right boundary of the original region, and $x=0$, since the axis of revolution is the y-axis, so $R=1-0=1$. This same washer has an inner radius given by the difference between $x=y^{2}$, since the left boundary of the region is $y=\sqrt{x}$, and $x=0$, since the axis of revolution is the y-axis, so $r=y^{2}-0=y^{2}$. Note also that $0 \leq y \leq 1$ over the given region. It follows that the volume of the solid is given by:

$$
\begin{aligned}
V & =\int_{0}^{1}\left(\pi R^{2}-\pi r^{2}\right) d y=\pi \int_{0}^{1}\left(1^{2}-\left(y^{2}\right)^{2}\right) d y=\pi \int_{0}^{1}\left(1-y^{4}\right) d y \\
& =\left.\pi\left(y-\frac{y^{5}}{5}\right)\right|_{0} ^{1}=\pi\left(1-\frac{1^{5}}{5}\right)-\pi\left(0-\frac{0^{5}}{5}\right)=\frac{4}{5} \pi-0=\frac{4}{5} \pi
\end{aligned}
$$

Quiz \#7. Friday, 15 March. [15 minutes]
Determine whether each of the following series converges or diverges.

1. $\sum_{n=0}^{\infty} e^{-n}$ [2.5]
2. $\sum_{n=0}^{\infty} \frac{1}{1+n^{2}}$ [2.5]

Solutions. 1. (Geometric Series) $\sum_{n=0}^{\infty} e^{-n}=\sum_{n=0}^{\infty} \frac{1}{e^{n}}=\sum_{n=0}^{\infty}\left(\frac{1}{e}\right)^{n}$ is a geometric series with first term $a=\left(\frac{1}{e}\right)^{0}=1$ and common ratio $r=\frac{1}{e}$. Since $r=\frac{1}{e}<1$, the series converges; in fact it adds up to $\frac{a}{1-r}=\frac{1}{1-\frac{1}{e}}=\frac{e}{e-1}$.

1. (Integral Test) By the Integral Test, $\sum_{n=0}^{\infty} e^{-n}$ converges or diverges exactly as the improper integral $\int_{0}^{\infty} e^{-x} d x$ does, so we compute the integral. We will use the substitution $u=-x$, so $d u=(-1) d x$ and thus $d x=(-1) d u$, and keep the old limits, substituting back in terms of x before using them:

$$
\begin{aligned}
\int_{0}^{\infty} e^{-x} d x & =\lim _{t \rightarrow \infty} \int_{0}^{t} e^{-x} d x=\lim _{t \rightarrow \infty} \int_{x=0}^{x=t} e^{u}(-1) d u=\left.\lim _{t \rightarrow \infty}(-1) e^{u}\right|_{x=0} ^{x=t} \\
& =\left.\lim _{t \rightarrow \infty}(-1) e^{-x}\right|_{0} ^{t}=\lim _{t \rightarrow \infty}\left[(-1) e^{-t}-(-1) e^{-0}\right] \lim _{t \rightarrow \infty}\left[1-e^{-t}\right]=1-0=1
\end{aligned}
$$

since $e^{-t} \rightarrow 0$ as $t \rightarrow \infty$. Since the improper integral in question converges to a real number, the given series converges by the Integral Test.
2. (Integral Test) By the Integral Test, $\sum_{n=0}^{\infty} \frac{1}{1+n^{2}}$ converges or diverges exactly as the improper integral $\int_{0}^{\infty} \frac{1}{1+x^{2}} d x$ does, so we compute the integral. Recall that $\frac{d}{d x} \arctan (x)=$ $\frac{1}{1+x^{2}}$, and that $\arctan (x)$ has a horizontal asymptote of $\frac{\pi}{2}$ as one heads out to infinity.

$$
\begin{aligned}
\int_{0}^{\infty} \frac{1}{1+x^{2}} d x & =\lim _{t \rightarrow \infty} \int_{0}^{t} \frac{1}{1+x^{2}} d x=\left.\lim _{t \rightarrow \infty} \arctan (x)\right|_{0} ^{t}=\lim _{t \rightarrow \infty}[\arctan (t)-\arctan (0)] \\
& =\lim _{t \rightarrow \infty}[\arctan (t)-0]=\lim _{t \rightarrow \infty} \arctan (t)=\frac{\pi}{2}
\end{aligned}
$$

Since the improper integral in question converges to a real number, the given series converges by the Integral Test.
2. (Basic Comparison Test and p-Test) Since $0<\frac{1}{1+n^{2}}<\frac{1}{n^{2}}$ for all $n \geq 1$, and $\sum_{n=0}^{\infty} \frac{1}{n^{2}}$ converges by the p-Test because $p=2>1$, the Basic Comparison Test tells us that $\sum_{n=0}^{\infty} \frac{1}{1+n^{2}}$ converges as well.

Quiz \#8. Friday, 22 March. [15 minutes]
Determine whether each of the following series converges or diverges.

1. $\sum_{n=2}^{\infty} \frac{(-1)^{n}}{n \ln (n)}$ [2.5]
2. $\sum_{n=0}^{\infty} \frac{3^{n}}{2^{n}+5^{n}}$ [2.5]

Solutions. 1. (Alternating Series Test) First, note that n and $\ln (n)$, and hence also $\frac{1}{n \ln (n)}$, are positive when $n \geq 2$. Since $(-1)^{n}$ alternates between positive and negative with successive n, it follows that $\frac{(-1)^{n}}{n \ln (n)}$ alternates as well.

Second, since $n+1>n$ and $\ln (n+1)>\ln (n)$ (because $\ln (x)$ is an increasing function) for all $n \geq 2$, it follows that $\left|\frac{(-1)^{n+1}}{(n+1) n \ln (n+1)}\right|=\frac{1}{(n+1) n \ln (n+1)}<\frac{1}{n \ln (n)}=\left|\frac{(-1)^{n}}{n \ln (n)}\right|$ for all $n \geq 2$.

Third, $\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n}}{n \ln (n)}\right|=\lim _{n \rightarrow \infty} \frac{1}{n \ln (n)}=0$ since $n \rightarrow \infty$ and $\ln (n) \rightarrow \infty$ as $n \rightarrow \infty$.
Since the given series satisfies the three conditions of the Alternating Series Test, it converges.
2. (Basic Comparison Test) Observe that the dominant terms in the numerator and denominator are 3^{n} and 5^{n}, respectively, which suggests that the given series ought to converge or diverge depending on whether $\sum_{n=0}^{\infty} \frac{3^{n}}{5^{n}}$ does. The latter series does converge, because it is a geometric series with common ratio $r=\frac{3}{5}<1$.

For each $n \geq 0$, we have $0 \leq \frac{3^{n}}{2^{n}+5^{n}} \leq \frac{3^{n}}{5^{n}}=\left(\frac{3}{5}\right)^{n}$ because making the denominator smaller makes the fraction bigger). Since $\sum_{n=0}^{\infty}\left(\frac{3}{5}\right)^{n}$ converges, as noted above, it follows by the Basic Comparison Test that $\sum_{n=0}^{\infty} \frac{3^{n}}{2^{n}+5^{n}}$ converges as well.
2. (Limit Comparison Test) Observe that the dominant terms in the numerator and denominator are 3^{n} and 5^{n}, respectively, which suggests that the given series ought to converge or diverge depending on whether $\sum_{n=0}^{\infty} \frac{3^{n}}{5^{n}}$ does. The latter series does converge, because it is a geometric series with common ratio $r=\frac{3}{5}<1$.

We have that $\lim _{n \rightarrow \infty} \frac{\frac{3^{n}}{2^{n}+5^{n}}}{\frac{3^{n}}{5^{n}}}=\lim _{n \rightarrow \infty} \frac{3^{n}}{2^{n}+5^{n}} \cdot \frac{5^{n}}{3^{n}}=\lim _{n \rightarrow \infty} \frac{5^{n}}{2^{n}+5^{n}}=\lim _{n \rightarrow \infty} \frac{5^{n}}{2^{n}+5^{n}} \cdot \frac{\frac{1}{5^{n}}}{\frac{1}{5^{n}}}=$ $\lim _{n \rightarrow \infty} \frac{1}{\frac{2^{n}}{5^{n}}+1}=\frac{1}{0+1}=1-$ note that $\frac{2^{n}}{5^{n}}=\left(\frac{2}{5}\right)^{n} \rightarrow 0$ as $n \rightarrow \infty$ because $0<\frac{2}{5}<1$. Since $\sum_{n=0}^{\infty} \frac{3^{n}}{5^{n}}$ converges, as noted above, it follows by the Limit Comparison Test that $\sum_{n=0}^{\infty} \frac{3^{n}}{2^{n}+5^{n}}$ converges as well.

Quiz \#9. Friday, 29 March. [10 minutes]

1. Determine for which values of x the series $\sum_{n=0}^{\infty} n 3^{n} x^{n}$ converges. [5]

Solution. As usual for such problems, we first try the Ratio Test.

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{(n+1) 3^{n+1} x^{n+1}}{n 3^{n} x^{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(n+1) 3 x}{n}\right|=3|x| \cdot \lim _{n \rightarrow \text { infty }} \frac{n+1}{n} \\
& =3|x| \cdot \lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)=3(x|\cdot(1+0)=3| x \mid
\end{aligned}
$$

It follows by the Ratio Test that the given series converges when $3|x|<1$, i.e. when $-\frac{1}{3}<x<\frac{1}{3}$, and diverges when $3|x|>1$, i.e. when $x<-\frac{1}{3}$ or $x>\frac{1}{3}$. When $3|x|=1$, i.e. when $x= \pm \frac{1}{3}$, the Ratio Test tells us nothing, so we have to handle these cases in other ways.

If $x=+\frac{1}{3}$, the series becomes $\sum_{n=0}^{\infty} n 3^{n}\left(\frac{1}{3}\right)^{n}=\sum_{n=0}^{\infty} n$ which diverges by the Divergence Test because $\lim _{n \rightarrow \infty} n=\infty$.

If $x=-\frac{1}{3}$, the series becomes $\sum_{n=0}^{\infty} n 3^{n}\left(-\frac{1}{3}\right)^{n}=\sum_{n=0}^{\infty}(-1)^{n} n$ which also diverges by the Divergence Test because $\lim _{n \rightarrow \infty}(-1)^{n} n$ does not exist. (The even terms head off to ∞ and the odd terms head off to $-\infty$.)

Combining the above, the given series converges for, and only for, $-\frac{1}{3}<x<\frac{1}{3}$.

Quiz \#10. Friday, 5 April. [15 minutes]

1. Find the Taylor series about $a=0$ of $f(x)=\frac{1}{(x+1)^{2}}$. [3]
2. Find the radius and interval of convergence of this Taylor series. [2]

Solutions. 1. Recall that the Taylor series of $f(x)$ at a is the power series $\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-$ $a)^{n}$. In our case, we have $a=0$, so we have to work out what $f^{(n)}(0)$ is for all $n \geq 0$ when $f(x)=\frac{1}{(x+1)^{2}}=(x+1)^{-2}$. We try brute force and pattern recognition:

$$
\begin{array}{cccccc}
n & 0 & 1 & 2 & 3 & \cdots \\
f^{(n)}(x) & (x+1)^{-2} & -2(x+1)^{-3} & 6(x+1)^{-4} & -24(x+1)^{-5} & \cdots \\
f^{(n)}(0) & 1 & -2 & 6 & -24 & \cdots
\end{array}
$$

It's not too hard to see that in general we have $f^{(n)}(x)=(-1)^{n}(n+1)!(x+1)^{n+2}$ and therefore $f^{(n)}(0)=(-1)^{n}(n+1)!1^{n+2}=(-1)^{n}(n+1)$!. It follows that the taylor series at $a=0$ of $f(x)=\frac{1}{(x+1)^{2}}=(x+1)^{-2}$ is:

$$
\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!}(x-0)^{n}=\sum_{n=0}^{\infty} \frac{(-1)^{n}(n+1)!}{n!} x^{n}=\sum_{n=0}^{\infty}(-1)^{n}(n+1) x^{n}
$$

2. As usual, we try the Ratio Test:

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n+1}((n+1)+1) x^{n+1}}{(-1)^{n}(n+1) x^{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{-(n+2) x}{n+1}\right| \\
& =|x| \lim _{n \rightarrow \infty} \frac{n+2}{n+1} \cdot \frac{1}{\frac{n}{n}}=|x| \lim _{n \rightarrow \infty} \frac{1+\frac{2}{n}}{1+\frac{1}{n}}=|x| \frac{1+0}{1+0}=|x|
\end{aligned}
$$

It follows by the Ratio Test that the Taylor series obtained above converges when $|x|<1$ and diverges when $|x|>1$, so its radius of convergence is $R=1$.

To determine the interval of convergence we also need to check whether the series converges or diverges at its endpoints, $x= \pm 1$:
$x=-1$: In this case the series is $\sum_{n=0}^{\infty}(-1)^{n}(n+1)(-1)^{n}=\sum_{n=0}^{\infty}(-1)^{2 n}(n+1)=\sum_{n=0}^{\infty}(n+1)$, which diverges by the Divergence Test because $\lim _{n \rightarrow \infty}(n+1)=\infty \neq 0$.
$x=+1$: In this case the series is $\sum_{n=0}^{\infty}(-1)^{n}(n+1) 1^{n}=\sum_{n=0}^{\infty}(-1)^{n}(n+1)$, which also diverges by the Divergence Test because $\lim _{n \rightarrow \infty}(-1)^{n}(n+1)$ does not exist. (The oddnumbered terms head off to $-\infty$ while the even-numbered terms head off to ∞.) Putting all this together, it follows that the interval of convergence of this Taylor series is $(-1,1)$.

