Mathematics 1120H – Calculus II: Integrals and Series TRENT UNIVERSITY, Winter 2019

Solutions to the Quizzes

Quiz #1. Wednesday, 20 June. [10 minutes]

Compute each of the following integrals.

1.
$$\int_0^{\pi/2} \cos(x) \sqrt{\sin(x)} \, dx \, [3]$$
 2. $\int \frac{1}{x \ln(x)} \, dx \, [2]$

SOLUTIONS. 1. We will use the substitution $u = \sin(x)$, so $\frac{du}{dx} = \cos(x)$ and hence $du = \cos(x) dx$, and change the limits as we go along: $\begin{array}{c} x & 0 & \pi/2 \\ u & 0 & 1 \end{array}$, since $\sin(0) = 0$ and $\sin(\pi/2) = 1$.

$$\int_0^{\pi/2} \cos(x) \sqrt{\sin(x)} \, dx = \int_0^1 \sqrt{u} \, du = \int_0^1 u^{1/2} \, du = \left. \frac{u^{3/2}}{3/2} \right|_0^1 = \left. \frac{2}{3} u^{3/2} \right|_0^1$$
$$= \frac{2}{3} \cdot 1^{3/2} - \frac{2}{3} \cdot 0^{3/2} = \frac{2}{3} - 0 = \frac{2}{3} \quad \Box$$

2. We will use the substitution $w = \ln(x)$, so $\frac{dw}{dx} = \frac{1}{x}$ and hence $dw = \frac{1}{x} dx$.

$$\int \frac{1}{x \ln(x)} \, dx = \int \frac{1}{w} \, dw = \ln(w) + C = \ln(\ln(x)) + C \quad \blacksquare$$

Quiz #2. Friday, 25 January. /10 minutes/

1. Compute $\int_{-1}^{0} x^2 e^{x+1} dx$. [5]

SOLUTION. We will use integration by parts twice, the first time with $u = x^2$ and $v' = e^{x+1}$, so that u' = 2x and $v = \int e^{x+1} dx = \int e \cdot e^x dx = e \cdot e^x = e^{x+1}$.

$$\begin{aligned} \int_{-1}^{0} x^2 e^{x+1} \, dx &= x^2 e^{x+1} \big|_{-1}^{0} - \int_{-1}^{0} 2x e^{x+1} \, dx = 0^2 e^{0+1} - (-1)^2 e^{-1+1} - 2 \int_{-1}^{0} x e^{x+1} \, dx \\ \text{We use parts again with } a &= x \text{ and } b' = e^{x+1}, \text{ so } a' = 1 \text{ and } b = e^{x+1}. \\ &= 0 - 1 \cdot e^0 - 2 \left[x e^{x+1} \big|_{-1}^{0} - \int_{-1}^{0} 1 e^{x+1} \, dx \right] \\ &= -1 \cdot 1 - 2 \left[0 e^{0+1} - (-1) e^{-1+1} - e^{x+1} \big|_{-1}^{0} \right] \\ &= -1 - 2 \left[0 - (-1) e^0 - \left(e^{0+1} - e^{-1+1} \right) \right] = -1 - 2 \left[1 \cdot 1 - \left(e^1 - e^0 \right) \right] \\ &= -1 - 2 \left[1 - (e-1) \right] = -1 - 2 \left[2 - e \right] = -1 - 2 \cdot 2 + 2e = 2e - 5 \end{aligned}$$

Quiz #3. Friday, 32 January 1 February. [12 minutes]

Compute each of the following integrals.

1.
$$\int_0^{\pi/4} \tan^2(x) \, dx \, [2.5]$$
 2. $\int_0^{\pi/2} \cos^3(x) \sin^2(x) \, dx \, [2.5]$

SOLUTIONS. 1. (Trig identity) We will use the trigonometric identity $\tan^2(x) = \sec^2(x) - 1$.

$$\int_0^{\pi/4} \tan^2(x) \, dx = \int_0^{\pi/4} \left(\sec^2(x) - 1 \right) \, dx = \left(\tan(x) - x \right) \Big|_0^{\pi/4} \\ = \left(\tan\left(\frac{\pi}{4}\right) - \frac{\pi}{4} \right) - \left(\tan(0) - 0 \right) = \left(1 - \frac{\pi}{4} \right) - \left(0 - 0 \right) = 1 - \frac{\pi}{4} \quad \Box$$

1. (Reduction formula) We will apply the reduction formula

$$\int \tan^k(x) \, dx = \frac{1}{k-1} \tan^{k-1}(x) - \int \tan^{k-2}(x) \, dx$$

Here goes:

$$\int_0^{\pi/4} \tan^2(x) \, dx = \frac{1}{2-1} \tan^{2-1}(x) \Big|_0^{\pi/4} - \int_0^{\pi/4} \tan^{2-2}(x) \, dx$$
$$= \tan(x) \Big|_0^{\pi/4} - \int_0^{\pi/4} \tan^0(x) \, dx = \left[\tan\left(\frac{\pi}{4}\right) - \tan(0) \right] - \int_0^{\pi/4} 1 \, dx$$
$$= \left[1 - 0 \right] - x \Big|_0^{\pi/4} = 1 - \left[\frac{\pi}{4} - 0 \right] = 1 - \frac{\pi}{4} \quad \Box$$

2. (Trig identity and substitution) We will use the trigonometric identity $\cos^2(x) = 1 - \sin^2(x)$ and then substitute $u = \sin(x)$, so $du = \cos(x) dx$, and change limits as we go along: $\begin{array}{c} x & 0 & \pi/2 \\ u & 0 & 1 \end{array}$.

$$\int_{0}^{\pi/2} \cos^{3}(x) \sin^{2}(x) dx = \int_{0}^{\pi/2} \cos^{2}(x) \cos(x) \sin^{2}(x) dx$$

=
$$\int_{0}^{\pi/2} (1 - \sin^{2}(x)) \sin^{2}(x) \cos(x) dx = \int_{0}^{1} (1 - u^{2}) u^{2} du$$

=
$$\int_{0}^{1} (u^{2} - u^{4}) du = \left(\frac{u^{3}}{3} - \frac{u^{5}}{5}\right)\Big|_{0}^{1}$$

=
$$\left(\frac{1^{3}}{3} - \frac{1^{5}}{5}\right) - \left(\frac{0^{3}}{3} - \frac{0^{5}}{5}\right) = \left(\frac{1}{3} - \frac{1}{5}\right) - (0 - 0)$$

=
$$\left(\frac{5}{15} - \frac{3}{15}\right) - 0 = \frac{2}{15}$$

2. (Trig identity and reduction formula) We will apply the trig identity $\sin^2 x = 1 - \cos(x)$ and the reduction formula

$$\int \cos^k(x) \, dx = \frac{1}{k} \cos^{k-1}(x) \sin(x) + \frac{k-1}{k} \int \cos^{k-2}(x) \, dx \, .$$

Here goes:

$$\begin{split} \int_{0}^{\pi/2} \cos^{3}(x) \sin^{2}(x) \, dx &= \int_{0}^{\pi/2} \cos^{3}(x) \left(1 - \cos^{2}(x)\right) \, dx = \int_{0}^{\pi/2} \left(\cos^{3}(x) - \cos^{5}(x)\right) \, dx \\ &= \int_{0}^{\pi/2} \cos^{3}(x) \, dx - \int_{0}^{\pi/2} \cos^{5}(x) \, dx \\ &= \int_{0}^{\pi/2} \cos^{3}(x) \, dx - \left[\frac{1}{5} \cos^{4}(x) \sin(x)\right]_{0}^{\pi/2} + \frac{4}{5} \int_{0}^{\pi/2} \cos^{3}(x) \, dx\right] \\ &= \int_{0}^{\pi/2} \cos^{3}(x) \, dx - \frac{1}{5} \cos^{4}(x) \sin(x) \Big|_{0}^{\pi/2} - \frac{4}{5} \int_{0}^{\pi/2} \cos^{3}(x) \, dx \\ &= \frac{1}{5} \int_{0}^{\pi/2} \cos^{3}(x) \, dx - \frac{1}{5} \cos^{4}(x) \sin(x) \Big|_{0}^{\pi/2} \\ &= \frac{1}{5} \left[\frac{1}{3} \cos^{2}(x) \sin(x)\right]_{0}^{\pi/2} + \frac{2}{3} \int_{0}^{\pi/2} \cos(x) \, dx\right] \\ &- \frac{1}{5} \left[\cos^{4}\left(\frac{\pi}{2}\right) \sin\left(\frac{\pi}{2}\right) - \cos^{4}(0) \sin(0)\right] \\ &= \frac{1}{5} \left[\frac{1}{3} \left(\cos^{2}\left(\frac{\pi}{2}\right) \sin\left(\frac{\pi}{2}\right) - \cos^{2}(0) \sin(0)\right) \\ &+ \frac{2}{3} \left(\sin\left(\frac{\pi}{2}\right) - \sin(0)\right)\right] - \frac{1}{5} \cdot 0 \\ &= \frac{1}{5} \left[\frac{1}{3} \left(0^{2} \cdot 1 - 1^{2} \cdot 0\right) + \frac{2}{3} \left(1 - 0\right)\right] = \frac{1}{5} \left[\frac{1}{3} \cdot 0\frac{2}{3} \cdot 1\right] \\ &= \frac{1}{5} \cdot \frac{2}{3} = \frac{2}{15} \quad \blacksquare \end{split}$$

NOTE. The truly gung-ho can work out how to use the reduction formula(s) for mixed powers of sin(x) and cos(x) to solve question 2.

Quiz #4. Friday, 8 February. [10 minutes]

1. Compute
$$\int \frac{1}{\sqrt{4x^2 + 8x + 8}} \, dx.$$
 [5]

SOLUTION. Algebra, substitution, and trig substitution, oh my!

$$\int \frac{1}{\sqrt{4x^2 + 8x + 8}} \, dx = \int \frac{1}{\sqrt{4(x^2 + 2x + 2)}} \, dx = \int \frac{1}{2\sqrt{x^2 + 2x + 1 + 1}} \, dx$$
$$= \frac{1}{2} \int \frac{1}{\sqrt{(x + 1)^2 + 1}} \, dx \quad \text{Substitute } u = x + 1, \text{ so } du = dx.$$
$$= \frac{1}{2} \int \frac{1}{\sqrt{u^2 + 1}} \, du \quad \text{Substitute } u = \tan(\theta), \text{ so } du = \sec^2(\theta) \, d\theta.$$
$$= \frac{1}{2} \int \frac{1}{\sqrt{\tan^2(\theta) + 1}} \sec^2(\theta) \, d\theta = \frac{1}{2} \int \frac{\sec^2(\theta)}{\sqrt{\sec^2(\theta)}} \, d\theta$$
$$= \frac{1}{2} \int \frac{\sec^2(\theta)}{\sec(\theta)} \, d\theta = \frac{1}{2} \int \sec(\theta) \, d\theta = \frac{1}{2} \ln(\tan(\theta) + \sec(\theta)) + C$$
$$= \frac{1}{2} \ln\left(u + \sqrt{u^2 + 1}\right) + C = \frac{1}{2} \ln\left((x + 1) + \sqrt{(x + 1)^2 + 1}\right) + C$$

The truly gung-ho can rewrite the final expression as $\frac{1}{2}\ln\left((x+1) + \sqrt{x^2 + 2x + 2}\right) + C$, or even as $\ln\left(\sqrt{(x+1) + \sqrt{x^2 + 2x + 2}}\right) + C$, but that's probably more trouble than it's worth ...

Quiz #5. Friday, 15 February. [17 minutes]

1. Compute $\int \frac{x^2 + x + 5}{(x^2 + 4)(x + 1)} dx.$ [5]

SOLUTION. The integrand is a rational function, so we run through the usual partial fractions checklist:

i. Since the numerator of the integrand has degree two, which is less than the degree three of the denominator, we can proceed directly to factoring the denominator.

ii. The denominator, $(x^2 + 4)(x + 1)$, comes in at least partially factored form. As $x^2 + 4 \ge 4 > 0$ for all x, the factor $x^2 + 4$ has no roots and hence is an irreducible quadratic, which means that the denominator came fully factored.

iii. The partial fraction decomposition of $\frac{x^2 + x + 5}{(x^2 + 4)(x + 1)}$ is therefore $\frac{Ax + B}{x^2 + 4} + \frac{C}{x + 1}$ for some constants A, B, and C. Since

$$\frac{x^2 + x + 5}{(x^2 + 4)(x + 1)} = \frac{Ax + B}{x^2 + 4} + \frac{C}{x + 1} = \frac{(Ax + B)(x + 1) + C(x^2 + 4)}{(x^2 + 4)(x + 1)}$$
$$= \frac{Ax^2 + Ax + Bx + B + Cx^2 + 4C}{(x^2 + 4)(x + 1)}$$
$$= \frac{(A + C)x^2 + (A + B)x + (B + 4C)}{(x^2 + 4)(x + 1)},$$

it follows by comparing coefficients of like powers of x in the numerators at the beginning and the end above that A + C = 1, A + B = 1, and B + 4C = 5.

iv. We solve the linear equations obtained in the previous step for A, B, and C. The first two equations tell us that C = 1 - A = B. Plugging this into the third equation gives B + 4C = B + 4B = 5B = 5, and so B = 1, from which it now follows that C = B = 1 and A = 1 - B = 1 - 1 = 0. Thus $\frac{x^2 + x + 5}{(x^2 + 4)(x + 1)} = \frac{1}{x^2 + 4} + \frac{1}{x + 1}$.

v. Finally, we integrate:

$$\int \frac{x^2 + x + 5}{(x^2 + 4)(x + 1)} \, dx = \int \left(\frac{1}{x^2 + 4} + \frac{1}{x + 1}\right) \, dx = \int \frac{1}{x^2 + 4} \, dx + \int \frac{1}{x + 1} \, dx$$

Substitute $x = 2u$, so $dx = 2 \, du$, in the first integral,
and $w = x + 1$, so $dx = dw$, in the second integral.
$$= \int \frac{1}{(2u)^2 + 4} 2 \, du + \int \frac{1}{w} \, dw = \int \frac{2}{4u^2 + 4} \, du + \ln(w)$$
$$= \frac{2}{4} \int \frac{1}{u^2 + 1} \, du + \ln(w) = \frac{1}{2} \arctan(u) + \ln(w) + C$$
Substituting back, note that $u = \frac{x}{2}$ and $w = x + 1$.
$$= \frac{1}{2} \arctan\left(\frac{x}{2}\right) + \ln(x + 1) + C$$

Quiz #6. Friday, 8 March. [12 minutes]

1. Consider the region below $y = \sqrt{x}$ and above y = 0 for $0 \le x \le 1$. Find the volume of the solid obtained by revolving this region about the y-axis. [5]

SOLUTION. (Using cylindrical shells.) Since we are revolving the region about a vertical line, we should use x, the horizontal variable, if we intend to use the method of cylindrical shells. The cylindrical shell at x has radius equal to the distance from x to the y-axis (*i.e.* x = 0), so r = x - 0 = x, and height equal to the distance between $y = \sqrt{x}$ and y = 0, so $h = \sqrt{x} - 0 = \sqrt{x}$. It follows that the volume of the solid is given by:

$$V = \int_0^1 2\pi r h \, dx = \int_0^1 2\pi x \sqrt{x} \, dx = 2\pi \int_0^1 x^{3/2} \, dx = 2\pi \frac{x^{5/2}}{5/2} \Big|_0^1 = \frac{4}{5}\pi x^{5/2} \Big|_0^1$$
$$= \frac{4}{5}\pi \cdot 1^{5/2} - \frac{4}{5}\pi \cdot 0^{5/2} = \frac{4}{5}\pi - 0 = \frac{4}{5}\pi \qquad \Box$$

(Using washers.) Since we are revolving the region about a vertical line, we should use y, the vertical variable, if we intend to use the disk/washer method. The washer at y has an outer radius given by the difference between x = 1, the right boundary of the original region, and x = 0, since the axis of revolution is the y-axis, so R = 1 - 0 = 1. This same washer has an inner radius given by the difference between $x = y^2$, since the left boundary of the region is $y = \sqrt{x}$, and x = 0, since the axis of revolution is the y-axis, so $r = y^2 - 0 = y^2$. Note also that $0 \le y \le 1$ over the given region. It follows that the volume of the solid is given by:

$$V = \int_0^1 \left(\pi R^2 - \pi r^2\right) \, dy = \pi \int_0^1 \left(1^2 - \left(y^2\right)^2\right) \, dy = \pi \int_0^1 \left(1 - y^4\right) \, dy$$
$$= \pi \left(y - \frac{y^5}{5}\right) \Big|_0^1 = \pi \left(1 - \frac{1^5}{5}\right) - \pi \left(0 - \frac{0^5}{5}\right) = \frac{4}{5}\pi - 0 = \frac{4}{5}\pi$$

Quiz #7. Friday, 15 March. [15 minutes]

Determine whether each of the following series converges or diverges.

1.
$$\sum_{n=0}^{\infty} e^{-n} [2.5]$$
 2. $\sum_{n=0}^{\infty} \frac{1}{1+n^2} [2.5]$

SOLUTIONS. 1. (Geometric Series) $\sum_{n=0}^{\infty} e^{-n} = \sum_{n=0}^{\infty} \frac{1}{e^n} = \sum_{n=0}^{\infty} \left(\frac{1}{e}\right)^n$ is a geometric series

with first term $a = \left(\frac{1}{e}\right)^0 = 1$ and common ratio $r = \frac{1}{e}$. Since $r = \frac{1}{e} < 1$, the series converges; in fact it adds up to $\frac{a}{1-r} = \frac{1}{1-\frac{1}{2}} = \frac{e}{e-1}$. \Box

1. (Integral Test) By the Integral Test, $\sum_{n=0}^{\infty} e^{-n}$ converges or diverges exactly as the improper integral $\int_0^\infty e^{-x} dx$ does, so we compute the integral. We will use the substitution u = -x, so du = (-1) dx and thus dx = (-1) du, and keep the old limits, substituting

back in terms of x before using them:

$$\int_0^\infty e^{-x} dx = \lim_{t \to \infty} \int_0^t e^{-x} dx = \lim_{t \to \infty} \int_{x=0}^{x=t} e^u (-1) du = \lim_{t \to \infty} (-1)e^u \Big|_{x=0}^{x=t}$$
$$= \lim_{t \to \infty} (-1)e^{-x} \Big|_0^t = \lim_{t \to \infty} \left[(-1)e^{-t} - (-1)e^{-0} \right] \lim_{t \to \infty} \left[1 - e^{-t} \right] = 1 - 0 = 1,$$

since $e^{-t} \to 0$ as $t \to \infty$. Since the improper integral in question converges to a real number, the given series converges by the Integral Test. \Box

2. (Integral Test) By the Integral Test, $\sum_{n=1}^{\infty} \frac{1}{1+n^2}$ converges or diverges exactly as the improper integral $\int_0^\infty \frac{1}{1+x^2} dx$ does, so we compute the integral. Recall that $\frac{d}{dx} \arctan(x) =$ $\frac{1}{1+x^2}$, and that $\arctan(x)$ has a horizontal asymptote of $\frac{\pi}{2}$ as one heads out to infinity.

$$\int_0^\infty \frac{1}{1+x^2} dx = \lim_{t \to \infty} \int_0^t \frac{1}{1+x^2} dx = \lim_{t \to \infty} \arctan(x) \Big|_0^t = \lim_{t \to \infty} \left[\arctan(t) - \arctan(0)\right]$$
$$= \lim_{t \to \infty} \left[\arctan(t) - 0\right] = \lim_{t \to \infty} \arctan(t) = \frac{\pi}{2}$$

Since the improper integral in question converges to a real number, the given series converges by the Integral Test. \Box

2. (Basic Comparison Test and p-Test) Since $0 < \frac{1}{1+n^2} < \frac{1}{n^2}$ for all $n \ge 1$, and $\sum_{n=0}^{\infty} \frac{1}{n^2}$ converges by the *p*-Test because p = 2 > 1, the Basic Comparison Test tells us that $\sum_{n=1}^{\infty} \frac{1}{1+n^2}$ converges as well.

Quiz #8. Friday, 22 March. [15 minutes]

Determine whether each of the following series converges or diverges.

1.
$$\sum_{n=2}^{\infty} \frac{(-1)^n}{n \ln(n)} \ [2.5]$$
 2. $\sum_{n=0}^{\infty} \frac{3^n}{2^n + 5^n} \ [2.5]$

SOLUTIONS. 1. (Alternating Series Test) First, note that n and $\ln(n)$, and hence also $\frac{1}{n\ln(n)}$, are positive when $n \ge 2$. Since $(-1)^n$ alternates between positive and negative with successive n, it follows that $\frac{(-1)^n}{n\ln(n)}$ alternates as well.

Second, since n+1 > n and $\ln(n+1) > \ln(n)$ (because $\ln(x)$ is an increasing function) for all $n \ge 2$, it follows that $\left|\frac{(-1)^{n+1}}{(n+1)n\ln(n+1)}\right| = \frac{1}{(n+1)n\ln(n+1)} < \frac{1}{n\ln(n)} = \left|\frac{(-1)^n}{n\ln(n)}\right|$ for all $n \geq 2$.

Third, $\lim_{n \to \infty} \left| \frac{(-1)^n}{n \ln(n)} \right| = \lim_{n \to \infty} \frac{1}{n \ln(n)} = 0$ since $n \to \infty$ and $\ln(n) \to \infty$ as $n \to \infty$.

Since the given series satisfies the three conditions of the Alternating Series Test, it converges. \Box

2. (Basic Comparison Test) Observe that the dominant terms in the numerator and denominator are 3^n and 5^n , respectively, which suggests that the given series ought to converge or diverge depending on whether $\sum_{n=0}^{\infty} \frac{3^n}{5^n}$ does. The latter series does converge,

because it is a geometric series with common ratio $r = \frac{3}{5} < 1$. For each $n \ge 0$, we have $0 \le \frac{3^n}{2^n + 5^n} \le \frac{3^n}{5^n} = \left(\frac{3}{5}\right)^n$ because making the denominator smaller makes the fraction bigger). Since $\sum_{n=0}^{\infty} \left(\frac{3}{5}\right)^n$ converges, as noted above, it follows by the Basic Comparison Test that $\sum_{n=1}^{\infty} \frac{3^n}{2^n + 5^n}$ converges as well. \Box

2. (Limit Comparison Test) Observe that the dominant terms in the numerator and denominator are 3^n and 5^n , respectively, which suggests that the given series ought to converge or diverge depending on whether $\sum_{n=1}^{\infty} \frac{3^n}{5^n}$ does. The latter series does converge, because it is a geometric series with common ratio $r = \frac{3}{5} < 1$.

We have that $\lim_{n \to \infty} \frac{\frac{3^n}{2^n + 5^n}}{\frac{3^n}{5^n}} = \lim_{n \to \infty} \frac{3^n}{2^n + 5^n} \cdot \frac{5^n}{3^n} = \lim_{n \to \infty} \frac{5^n}{2^n + 5^n} = \lim_{n \to \infty} \frac{5^n}{2^n + 5^n} \cdot \frac{\frac{1}{5^n}}{\frac{1}{5^n}} = \lim_{n \to \infty} \frac{5^n}{2^n + 5^n} \cdot \frac{1}{5^n} = \lim_{n \to \infty} \frac{5^n}{2^n + 5^n} \cdot \frac{1}{5^n} = \lim_{n \to \infty} \frac{5^n}{2^n + 5^n} \cdot \frac{1}{5^n} = \lim_{n \to \infty} \frac{5^n}{2^n + 5^n} \cdot \frac{1}{5^n} = \lim_{n \to \infty} \frac{5^n}{2^n + 5^n} \cdot \frac{1}{5^n} = \lim_{n \to \infty} \frac{5^n}{2^n + 5^n} \cdot \frac{1}{5^n} = \lim_{n \to \infty} \frac{5^n}{2^n + 5^n} \cdot \frac{1}{5^n} = \lim_{n \to \infty} \frac{5^n}{2^n + 5^n} \cdot \frac{1}{5^n} = \lim_{n \to \infty} \frac{5^n}{2^n + 5^n} \cdot \frac{1}{5^n} = \lim_{n \to \infty} \frac{5^n}{2^n + 5^n} \cdot \frac{1}{5^n} = \lim_{n \to \infty} \frac{5^n}{2^n + 5^n} \cdot \frac{5^n}{5^n} = \lim_{n \to \infty} \frac{5^n}{2^n + 5^n} \cdot \frac{5^n}{5^n} = \lim_{n \to \infty} \frac{5^n}{2^n + 5^n} \cdot \frac{5^n}{5^n} = \lim_{n \to \infty} \frac{5^n}{2^n + 5^n} \cdot \frac{5^n}{5^n} = \lim_{n \to \infty} \frac{5^n}{2^n + 5^n} \cdot \frac{5^n}{5^n} = \lim_{n \to \infty} \frac{5^n}{2^n + 5^n} \cdot \frac{5^n}{5^n} = \lim_{n \to \infty} \frac{5^n}{2^n + 5^n} \cdot \frac{5^n}{5^n} = \lim_{n \to \infty} \frac{5^n}{2^n + 5^n} \cdot \frac{5^n}{5^n} = \lim_{n \to \infty} \frac{5^n}{2^n + 5^n} \cdot \frac{5^n}{5^n} = \lim_{n \to \infty} \frac{5^n}{2^n + 5^n} \cdot \frac{5^n}{5^n} = \lim_{n \to \infty} \frac{5^n}{2^n + 5^n} \cdot \frac{5^n}{5^n} = \lim_{n \to \infty} \frac{5^n}{2^n + 5^n} \cdot \frac{5^n}{5^n} = \lim_{n \to \infty} \frac{5^n}{2^n + 5^n} \cdot \frac{5^n}{5^n} = \lim_{n \to \infty} \frac{5^n}{2^n + 5^n} \cdot \frac{5^n}{5^n} = \lim_{n \to \infty} \frac{5^n}{2^n + 5^n} \cdot \frac{5^n}{5^n} = \lim_{n \to \infty} \frac{5^n}{2^n + 5^n} \cdot \frac{5^n}{5^n} = \lim_{n \to \infty} \frac{5^n}{2^n + 5^n} \cdot \frac{5^n}{5^n} = \lim_{n \to \infty} \frac{5^n}{2^n + 5^n} \cdot \frac{5^n}{5^n} = \lim_{n \to \infty} \frac{5^n}{2^n + 5^n} \cdot \frac{5^n}{5^n} = \lim_{n \to \infty} \frac{5^n}{2^n + 5^n} \cdot \frac{5^n}{5^n} = \lim_{n \to \infty} \frac{5^n}{2^n + 5^n} \cdot \frac{5^n}{5^n} = \lim_{n \to \infty} \frac{5^n}{2^n + 5^n} \cdot \frac{5^n}{5^n} = \lim_{n \to \infty} \frac{5^n}{2^n + 5^n} \cdot \frac{5^n}{5^n} = \lim_{n \to \infty} \frac{5^n}{2^n + 5^n} \cdot \frac{5^n}{5^n} = \lim_{n \to \infty} \frac{5^n}{2^n + 5^n} \cdot \frac{5^n}{5^n} = \lim_{n \to \infty} \frac{5^n}{2^n + 5^n} \cdot \frac{5^n}{5^n} = \lim_{n \to \infty} \frac{5^n}{2^n + 5^n} \cdot \frac{5^n}{5^n} = \lim_{n \to \infty} \frac{5^n}{2^n + 5^n} \cdot \frac{5^n}{5^n} = \lim_{n \to \infty} \frac{5^n}{2^n + 5^n} \cdot \frac{5^n}{5^n} = \lim_{n \to \infty} \frac{5^n}{2^n + 5^n} \cdot \frac{5^n}{5^n} = \lim_{n \to \infty} \frac{5^n}{2^n + 5^n} \cdot \frac{5^n}{5^n} = \lim_{n \to \infty} \frac{5^n}{5^n + 5^n} \cdot \frac{5^n}{5^n} = \lim_{n \to \infty} \frac{5^n}{5^n} \cdot \frac{5$ $\lim_{n \to \infty} \frac{1}{\frac{2^n}{5^n} + 1} = \frac{1}{0+1} = 1 - \text{note that } \frac{2^n}{5^n} = \left(\frac{2}{5}\right)^n \to 0 \text{ as } n \to \infty \text{ because } 0 < \frac{2}{5} < 1. \text{ Since } 1 = \frac{1}{2} + \frac{1}{2} +$ $\sum_{n=0}^{\infty} \frac{3^n}{5^n}$ converges, as noted above, it follows by the Limit Comparison Test that $\sum_{n=0}^{\infty} \frac{3^n}{2^n + 5^n}$ converges as well.

Quiz #9. Friday, 29 March. [10 minutes]

1. Determine for which values of x the series $\sum_{n=0}^{\infty} n3^n x^n$ converges. [5]

SOLUTION. As usual for such problems, we first try the Ratio Test.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(n+1)3^{n+1}x^{n+1}}{n3^n x^n} \right| = \lim_{n \to \infty} \left| \frac{(n+1)3x}{n} \right| = 3|x| \cdot \lim_{n \to infty} \frac{n+1}{n}$$
$$= 3|x| \cdot \lim_{n \to \infty} \left(1 + \frac{1}{n} \right) = 3(x| \cdot (1+0) = 3|x|$$

It follows by the Ratio Test that the given series converges when 3|x| < 1, *i.e.* when $-\frac{1}{3} < x < \frac{1}{3}$, and diverges when 3|x| > 1, *i.e.* when $x < -\frac{1}{3}$ or $x > \frac{1}{3}$. When 3|x| = 1, *i.e.* when $x = \pm \frac{1}{3}$, the Ratio Test tells us nothing, so we have to handle these cases in other ways.

If $x = +\frac{1}{3}$, the series becomes $\sum_{n=0}^{\infty} n3^n \left(\frac{1}{3}\right)^n = \sum_{n=0}^{\infty} n$ which diverges by the Divergence Test because $\lim_{n \to \infty} n = \infty$.

If $x = -\frac{1}{3}$, the series becomes $\sum_{n=0}^{\infty} n3^n \left(-\frac{1}{3}\right)^n = \sum_{n=0}^{\infty} (-1)^n n$ which also diverges by the Divergence Test because $\lim_{n \to \infty} (-1)^n n$ does not exist. (The even terms head off to ∞ and the odd terms head off to $-\infty$.)

Combining the above, the given series converges for, and only for, $-\frac{1}{3} < x < \frac{1}{3}$.

Quiz #10. Friday, 5 April. [15 minutes]

1. Find the Taylor series about a = 0 of $f(x) = \frac{1}{(x+1)^2}$. [3]

2. Find the radius and interval of convergence of this Taylor series. [2]

SOLUTIONS. 1. Recall that the Taylor series of f(x) at a is the power series $\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^n$. In our case, we have a = 0, so we have to work out what $f^{(n)}(0)$ is for all $n \ge 0$ when $f(x) = \frac{1}{(x+1)^2} = (x+1)^{-2}$. We try brute force and pattern recognition:

It's not too hard to see that in general we have $f^{(n)}(x) = (-1)^n (n+1)! (x+1)^{n+2}$ and therefore $f^{(n)}(0) = (-1)^n (n+1)! 1^{n+2} = (-1)^n (n+1)!$. It follows that the taylor series at a = 0 of $f(x) = \frac{1}{(x+1)^2} = (x+1)^{-2}$ is:

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} (x-0)^n = \sum_{n=0}^{\infty} \frac{(-1)^n (n+1)!}{n!} x^n = \sum_{n=0}^{\infty} (-1)^n (n+1) x^n \qquad \Box$$

2. As usual, we try the Ratio Test:

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-1)^{n+1} \left((n+1) + 1 \right) x^{n+1}}{(-1)^n (n+1) x^n} \right| = \lim_{n \to \infty} \left| \frac{-(n+2)x}{n+1} \right|$$
$$= |x| \lim_{n \to \infty} \frac{n+2}{n+1} \cdot \frac{1}{\frac{1}{n}} = |x| \lim_{n \to \infty} \frac{1+\frac{2}{n}}{1+\frac{1}{n}} = |x| \frac{1+0}{1+0} = |x|$$

It follows by the Ratio Test that the Taylor series obtained above converges when |x| < 1and diverges when |x| > 1, so its radius of convergence is R = 1.

To determine the interval of convergence we also need to check whether the series converges or diverges at its endpoints, $x = \pm 1$:

$$x = -1$$
: In this case the series is $\sum_{n=0}^{\infty} (-1)^n (n+1)(-1)^n = \sum_{n=0}^{\infty} (-1)^{2n} (n+1) = \sum_{n=0}^{\infty} (n+1)$, which diverges by the Divergence Test because $\lim_{n \to \infty} (n+1) = \infty \neq 0$.

x = +1: In this case the series is $\sum_{n=0}^{\infty} (-1)^n (n+1) 1^n = \sum_{n=0}^{\infty} (-1)^n (n+1)$, which also diverges by the Divergence Test because $\lim_{n \to \infty} (-1)^n (n+1)$ does not exist. (The oddnumbered terms head off to $-\infty$ while the even-numbered terms head off to ∞ .) Putting all this together, it follows that the interval of convergence of this Taylor series is (-1, 1). ■