Mathematics 1120H - Calculus II: Integrals and Series
 Trent University, Winter 2019
 Final Examination
 19:00-22:00 on Monday, 22 April, in the Gym.

Time: 3 hours.
Brought to you by Стефан Біланюк.
Instructions: Do parts \mathbf{X}, \mathbf{Y}, and \mathbf{Z}, and, if you wish, part \mathbf{W}. Show all your work and justify all your answers. If in doubt about something, ask!
Aids: Any calculator; (all sides of) one aid sheet; one (1) brain (no neuron limit).
Part X. Do all four (4) of 1-4.

1. Evaluate any four (4) of the integrals a-f. [$20=4 \times 5$ each]
a. $\int_{-1}^{1} \frac{1}{(x+2)^{2}} d x$
b. $\int z \cos (z) d z$
c. $\int\left(1-y^{2}\right)^{-1 / 2} d y$
d. $\int_{-\infty}^{0} 2 u e^{u^{2}} d u$
e. $\int \frac{1}{v^{3}+v} d v$
f. $\int_{0}^{\pi / 2} \frac{\cos (w)}{\sin ^{2}(w)+1} d w$
2. Determine whether the series converges in any four (4) of $\mathbf{a}-\mathbf{f}$. [$20=4 \times 5 \mathrm{each}$]
a. $\sum_{n=0}^{\infty} \frac{2^{n}}{3^{n}+4^{n}}$
b. $\sum_{m=1}^{\infty} \frac{(-1)^{m+1}}{\ln (m+2)}$
c. $\sum_{\ell=2}^{\infty} \frac{e^{\ell}}{e^{2 \ell}+1}$
d. $\sum_{k=3}^{\infty} \frac{(-1)^{k} 17^{k}}{k^{k}}$
e. $\sum_{j=4}^{\infty} \frac{j!}{(2 j)!}$
f. $\sum_{i=5}^{\infty} \frac{(i+1)^{3}}{(i+2)^{5}}$
3. Do any four (4) of a-f. [20 $=4 \times 5$ each]
a. Use the Right-Hand Rule to compute $\int_{0}^{2}(x+1) d x$.
b. Determine whether the series $\sum_{n=1}^{\infty} \frac{n!}{n^{n}}$ converges or diverges.
c. Find the area of the region between $y=\sqrt{x+1}$ and $y=\frac{x}{3}+1$, where $0 \leq x \leq 3$.
d. Find the radius and interval of convergence of the power series $\sum_{n=0}^{\infty} 2^{n+1} x^{n}$.
e. Compute $\lim _{n \rightarrow \infty} \frac{2^{n}}{n!}$. [Hint: Squeeze!]
f. Find the volume of the solid obtained by revolving the region between $y=x$ and $y=0$, where $0 \leq x \leq 1$, about the x-axis.
4. Find the centroid of the region below $y=\sqrt{4-x^{2}}$ and above $y=0$, where $0 \leq x \leq 2$. [You may assume that the density is constant and units have been chosen so that mass $=$ area.] [12]

Part Y. Do either one (1) of $\mathbf{5}$ or $\mathbf{6}$. [14]
5. Consider the curve $y=\frac{2}{3} x^{3 / 2}$, where $0 \leq x \leq 3$.
a. Find the arc-length of the curve. [7]
b. Find the area of the surface obtained by revolving the curve about the y-axis. [7]
6. Consider the triangle whose vertices are the points $(0,0),(1,1)$, and $(2,0)$. Find the volume of the solid obtained by revolving this triangle about ...
a. ... the x-axis. [7]
b. ... the y-axis. [7]

Part Z. Do either one (1) of $\mathbf{7}$ or 8. [14]
7. Find the Taylor series at $a=0$ of $f(x)=\frac{1}{1+2 x}$ and determine its radius and interval of convergence.
8. a. Use Taylor's formula to find the Taylor series at $a=0$ of $g(x)=e^{x}$ and determine its radius and interval of convergence. [10]
b. How many terms of this Taylor series are needed to guarantee that if the partial sum is evaluated at $x=1$, it will be within $0.01=\frac{1}{100}$ of $g(1)=e^{1}=e$? [4]

$$
[\text { Total }=100]
$$

Part W. Bonus problems! If you feel like it and have the time, do one or both of these.
W. Consider the following real number:

$$
a=\sum_{n=0}^{\infty} \frac{1}{1\left[2^{\left[2^{n}\right]}\right.}=\sum_{n=0}^{\infty} 10^{-\left[2^{n}\right]}=0.11010001000000010 \cdots
$$

[For $k \geq 1$, there are $2^{k-1}-1$ zeros between the k th and $(k+1)$ st ones in the decimal expansion of a.] Explain why a must be irrational. [1]
M. Write a haiku (or several :-) touching on calculus or mathematics in general. [1]

What is a haiku?

seventeen in three:
five and seven and five of syllables in lines

Enjoy your summer!

P.S.: You can keep this question sheet. Solutions to this exam will be posted to the course archive page at euclid.trentu.ca/math/sb/1120H/ in a day or two.

