
Mathematics 1120H – Calculus II: Integrals and Series
Trent University, Winter 2019

Solutions to the Final Examination
19:00-22:00 on Monday, 22 April, in the Gym.

Time: 3 hours. Brought to you by Stefan B�lan�k.

Instructions: Do parts X, Y, and Z, and, if you wish, part W. Show all your work and
justify all your answers. If in doubt about something, ask!

Aids: Any calculator; (all sides of) one aid sheet; one (1) brain (no neuron limit).

Part X. Do all four (4) of 1–4.

1. Evaluate any four (4) of the integrals a–f. [20 = 4 × 5 each]

a.

∫ 1

−1

1

(x+ 2)2
dx b.

∫
z cos(z) dz c.

∫ (
1− y2

)−1/2
dy

d.

∫ 0

−∞
2ueu

2

du e.

∫
1

v3 + v
dv f.

∫ π/2

0

cos(w)

sin2(w) + 1
dw

Solutions. a. (Substitution) We will use the substitution u = x + 2, so du = dx and

change the limits as we go along:
x −1 1
u 1 3

.

∫ 1

−1

1

(x+ 2)2
dx =

∫ 3

1

1

u2
du =

∫ 3

1

u−2 du =
u−1

−1

∣∣∣∣3
1

=
−1

u

∣∣∣∣3
1

=
−1

3
− −1

1
=

2

3
�

b. (Integration by parts) We will use integration by parts with u = z and v′ = cos(z), so
u′ = 1 and v = sin(z).∫

z cos(z) dz = z sin(z)−
∫

sin(z) dz = z sin(z)− (− cos(z)) + C

= z sin(z) + cos(z) + C �

c. (Trigonometric substitution) We will use the substitution y = sin(θ), so dy = cos(θ) dθ
and θ = arcsin(y).∫ (

1− y2
)−1/2

dy =

∫
1√

1− y2
dy =

∫
1√

1− sin2(θ)
cos(θ) dθ

=

∫
1√

cos2(θ)
cos(θ) dθ =

∫
cos(θ)

cos(θ)
dθ =

∫
1 dθ

= θ + C = arcsin(y) + C �
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d. (Improper integral and substitution) We will use the substitution w = u2, so dw = 2u du,
and substitute back after finding the antiderivative instead of changing the limits as we go
along. ∫ 0

−∞
2ueu

2

du = lim
t→−∞

∫ 0

t

2ueu
2

du = lim
t→−∞

∫ u=0

u=t

ew dw = lim
t→−∞

ew|u=0
u=t

= lim
t→−∞

eu
2
∣∣∣0
t

= lim
t→−∞

(
e0

2

− et
2
)

lim
t→−∞

(
1− et

2
)

= −∞

That is, this improper integral does not converge. �

e. (Partial fractions) Since the degree of the numerator, namely 0, is less than the degree
of the denominator, namely 3, we can move directly to factoring the denominator. v3+v =
v
(
v2 + 1

)
and v2 + 1 is an irreducible quadratic: since v2 + 1 ≥ 1 > 0 for all v ∈ R, it has

no roots and hence cannot be factored into linear factors with real coefficients.

The partial fraction decomposition is thus
1

v3 + v
=

1

v (v2 + 1)
=
A

v
+
Bv + C

v2 + 1
for

some unknown constants A, B, and C. Putting the right-hand side over a common denom-
inator and then comparing numerators tells us that we must have 1 = Av2+A+Bv2+Cv =
(A + B)v2 + Cv + A, so A + B = 0, C = 0, and A = 1, and thus B = −A = −1. We

therefore have
1

v3 + v
=

1

v
+
−v

v2 + 1
=

1

v
− v

v2 + 1
.

Now we can integrate. In one part we will use the substitution w = v2 + 1, so

dw = 2v dv and hence v dv =
1

2
dw.

∫
1

v3 + v
dv =

∫ [
1

v
− v

v2 + 1

]
dv =

∫
1

v
dv −

∫
v

v2 + 1
dv

= ln(v)−
∫

1

w
· 1

2
dw = ln(v)− 1

2
ln(w) + C

= ln(v)− 1

2
ln
(
v2 + 1

)
+ C �

f. (Substitution) We will use the substitution u = sin(w), so du = cos(w) dw, and change

the limits as we go along:
w 0 π/2
u 0 1

.

∫ π/2

0

cos(w)

sin2(w) + 1
dw =

∫ 1

0

1

u2 + 1
du = arctan(u)|10

= arctan(1)− arctan(0) =
π

4
− 0 =

π

4
�
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2. Determine whether the series converges in any four (4) of a–f. [20 = 4 × 5 each]

a.
∞∑
n=0

2n

3n + 4n
b.

∞∑
m=1

(−1)m+1

ln(m+ 2)
c.

∞∑
`=2

e`

e2` + 1

d.

∞∑
k=3

(−1)k17k

kk
e.

∞∑
j=4

j!

(2j)!
f.

∞∑
i=5

(i+ 1)3

(i+ 2)5

Solutions. a. (Basic Comparison Test) 2n dominates the numerator and 4n dominates

the denominator, so the given series ought to converge since
∞∑
n=0

2n

4n
does, which is the

case because it is a geometric series with common ratio r =
2

4
=

1

2
, which has absolute

value
1

2
< 1. Since making the denominator bigger makes a fraction smaller, we have

0 <
2n

3n + 4n
≤ 2n

4n
for all n ≥ 0, so the given series converges by the Basic Comparison

Test. �

b. (Alternating Series Test) First, since ln(m + 2 > 0 for all m ≥ 1 while (−1)m+1

alternates sign, the terms of the series,
(−1)m+1

ln(m+ 2)
, alternates.sign as well.

Second, since ln(x) is an icreasing function, it follows that∣∣∣∣ (−1)(m+1)+1

ln ((m+ 1) + 2))

∣∣∣∣ =
1

ln (m+ 3)
<

1

ln(m+ 2)
=

∣∣∣∣ (−1)m+1

ln(m+ 2)

∣∣∣∣
for all m ≥ 1.

Third, since ln(x)→∞ as x→∞, it follows that

lim
m→∞

∣∣∣∣ (−1)m+1

ln(m+ 2)

∣∣∣∣ = lim
m→∞

1

ln(m+ 2)
= 0 .

Since the series satisfies all three hypotheses of the Alternating Series Test, it must
converge. �

c. (Limit Comparison Test) e` dominates the numerator and e2` dominates the denomi-

nator, so the given series ought to converge since
∞∑
`=2

e`

e2`
=
∞∑
`=2

1

e`
converges, which it does

because it is a geometric series with common ratio r =
1

e
, which has an absolute value of

1

e
< 1. Since

lim
`→∞

e`

e2`+1
1
e`

= lim
`→∞

e`

e2` + 1
· e

`

1
= lim
`→∞

e2`

e2` + 1
· e
−2`

e−2`
= lim
`→∞

1

1 + e−2`
=

1

1 + 0
= 1 ,
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it follows that the given series must converge because

∞∑
`=2

1

e`
does. �

d. (Root Test) Since

lim
k→∞

∣∣∣∣ (−1)k17k

kk

∣∣∣∣1/k = lim
k→∞

(
17k

kk

)1/k

= lim
k→∞

([
17

k

]k)1/k

= lim
k→∞

17

k
= 0 < 1 ,

it follows by the Root Test that the given series converges. �

e. (Ratio Test) Since

lim
j→∞

∣∣∣∣aj+1

aj

∣∣∣∣ = lim
j→∞

∣∣∣∣∣∣
(j+1)!

(2(j+1))!

j!
(2j)!

∣∣∣∣∣∣ = lim
j→∞

(j + 1)!

(2j + 2)!
· (2j)!

j!
= lim
j→∞

j + 1

(2j + 2)(2j + 1)

= lim
j→∞

j + 1

2(j + 1)(2j + 1)
= lim
j→∞

1

2(2j + 1)
= lim
j→∞

1

4j + 2
= 0 < 1 ,

the given series converges by the Ratio Test. �

f. (Generalized p-Test)
∞∑
i=5

(i+ 1)3

(i+ 2)5
converges by the Generalized p-Test because the nu-

merator of each term is a polynomial of degree 3 and the denominator is a polynomial of
degree 5, so p = 5− 3 = 2 > 1. �
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3. Do any four (4) of a–f. [20 = 4 × 5 each]

a. Use the Right-Hand Rule to compute

∫ 2

0

(x+ 1) dx.

b. Determine whether the series
∞∑
n=1

n!

nn
converges or diverges.

c. Find the area of the region between y =
√
x+ 1 and y =

x

3
+ 1, where 0 ≤ x ≤ 3.

d. Find the radius and interval of convergence of the power series
∞∑
n=0

2n+1xn.

e. Compute lim
n→∞

2n

n!
. [Hint: Squeeze!]

f. Find the volume of the solid obtained by revolving the region between y = x and
y = 0, where 0 ≤ x ≤ 1, about the x-axis.

Solutions. a. Recall that the Right-Hand Rule formula is∫ b

a

f(x) dx = lim
n→∞

n∑
i=1

b− a
n

f

(
a+ i

b− a
n

)
.

In our case, a = 0, b = 2, and f(x) = x + 1; we plug these into the formula and compute
away: ∫ 2

0

(x+ 1) dx = lim
n→∞

n∑
i=1

2− 0

n

[(
0 + i

2− 0

n

)
+ 1

]
= lim
n→∞

2

n

n∑
i=1

[
i
2

n
+ 1

]

= lim
n→∞

2

n

[(
n∑
i=1

i
2

n

)
+

(
n∑
i=1

1

)]
= lim
n→∞

2

n

[
2

n

(
n∑
i=1

i

)
+ n

]

= lim
n→∞

2

n

[
2

n
· n(n+ 1)

2
+ n

]
= lim
n→∞

2

n
[(n+ 1) + n]

= lim
n→∞

2

n
[2n+ 1] = lim

n→∞

[
4 +

2

n

]
= 4 + 0 = 4 �

b. The key here is the following inequality, which works for all n ≥ 2.

0 <
n!

nn
=
n(n− 1)(n− 2) · · · 3 · 2 · 1

nṅ · n · · ·n · n · n
=
n

n
· n− 1

n
· n− 2

n
· · · 3

n
· 2

n
· 1

n
≤ 2

n
· 1

n
=

2

n2

∞∑
n=1

2

n2
= 2

∞∑
n=1

1

n2
converges by the p-Test because p = 2− 0− 2 > 1, so it follows by the

Basic Comparison Test that
∞∑
n=1

n!

nn
also converges. �

c. First, note that y =
√
x+ 1 and y =

x

3
+ 1 intersect at the endpoints of the given

interval:
√

0 + 1 = 1 = 0
3 + 1 and

√
3 + 1 =

√
4 = 2 = 3

3 + 1. Since the former curve
is a piece of a quadratic lying on its side and the latter curve is a straight line, it’s not
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hard to see that there can’t be any more points of intersection. Second, it’s also easy

to check that between 0 and 3, y =
√
x+ 1 is above y =

x

3
+ 1: at x = 1 we have

√
1 + 1 =

√
2 ≈ 1.4 > 1.3 ≈ 1

3 + 1. Thus the area between the curves for 0 ≤ x ≤ 3 is:∫ 3

0

[√
x+ 1−

(x
3

+ 1
)]

dx =

∫ 3

0

(x+ 1)
1/2

dx−
∫ 3

0

(x
3

+ 1
)
dx

In the first part we use the substitution u = x+ 1, so

du = dx and
x 0 3
u 1 4

.

=

∫ 4

1

u1/2 du−
(
x2

6
+ x

)∣∣∣∣3
0

=
u3/2

3/2

∣∣∣∣4
1

−
(
x2

6
+ x

)∣∣∣∣3
0

=

[
2

3
43/2 − 2

3
13/2

]
−
[(

32

6
+ 3

)
−
(

02

6
+ 0

)]
=

[
16

3
− 2

3

]
−
[

9

2
− 0

]
=

14

3
− 9

2
=

28

6
− 27

6
=

1

6
�

d. (Brute Force) As usual we first throw the Ratio Test at the given power series:

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣2(n+1)+1xn+1

2n+1xn

∣∣∣∣ = lim
n→∞

|2x| = 2|x|

It follows from the Ratio Test that the power series

∞∑
n=0

2n+1xn converges when 2|x| < 1,

i.e. when |x| < 1

2
, and diverges when 2|x| > 1, i.e. when |x| > 1

2
. Hence the radius of

convergence of the series (about a = 0) is R =
1

2
. To determine the interval of convergence

we have to see what happens at the endpoints x = ±1

2
.

At x =
1

2
the series becomes

∞∑
n=0

2n+1

(
1

2

)n
=

∞∑
n=0

2. This diverges by the Divergence

Test because lim
n→∞

2 = 2 6= 0.

At x = −1

2
the series becomes

∞∑
n=0

2n+1

(
−1

2

)n
=
∞∑
n=0

(−1)n2. This diverges by the

Divergence Test because lim
n→∞

(−1)n2 does not exist: all the odd-numbered terms ar −2

and all the even-numbered terms are 2.

Thus the interval of convergence of the given series is

(
−1

2
,

1

2

)
. �

d. (A Little Cleverness)
∞∑
n=0

2n+1xn =
∞∑
n=0

2(2x)n is a geometric series with first term

a = 2 and common ratio r = 2x. It therefore converges exactly when |r| = |2x| < 1, i.e.
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exactly when |x| < 1

2
, and diverges otherwise. This means that the radius of convergence

is R =
1

2
and the interval of convergence is

(
−1

2
,

1

2

)
. �

e. The key here is the following inequality, which works for all n ≥ 2.

0 <
2n

n!
=

2 · 2 · 2 · · · 2 · 2 · 2
n(n− 1)(n− 2) · · · 3 · 2 · 1

=
2

n
· 2

n− 1
· 2

n− 2
· · · 2

3
· 2

2
· 1

2
≤ 2

n
· 1

2
=

1

n

Since lim
n→∞

0 = 0 = lim
n→∞

1

n
, it follows by the Squeeze Theorem that lim

n→∞

2n

n!
= 0, too. �

f. (Disks) The solid of revolution in question is a cone whose axis of symmetry is the
x-axis, with the tip at the origin and the blunt end facing to the right.

We will use the disk method to compute its volume. The cross section at x of the
cone is a disk with radius r = x − 0 = x. It follows that the volume of the solid is given
by:

V =

∫ 1

0

πr2 dx =

∫ 1

)

πx2 dx = π
x3

3

∣∣∣∣1
0

= π
13

3
− π 03

3
=
π

3
�

f. (Shells) We will use the cylindrical shell method to find the volume of the cone. Since
we revolved the triangle about the x-axis, we will use y as the native variable; note that
0 ≤ y ≤ 1 for the original triangle. The cylindrical shell at y has radius r = y− 0 = y and
height or length h = 1− x = 1− y. t follows that the volume of the solid is given by:

V =

∫ 1

0

2πrh dy = 2π

∫ 1

0

y(1− y) dy = 2π

∫ 1

0

(
y − y2

)
dy = 2π

(
y2

2
− y3

3

)∣∣∣∣1
0

= 2π

(
12

2
− 13

3

)
− 2π

(
02

2
− 03

3

)
= 2π

(
1

2
− 1

3

)
− 2π · 0 = 2π

1

6
− 0 =

π

3
�

f. (Geometry) The formula for the volume of a cone with base radius r and height h is

V =
πr2h

3
. In this case r = h = 1, so V =

π121

3
=
π

3
. �
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4. Find the centroid of the region below y =
√

4− x2 and above y = 0, where 0 ≤ x ≤ 2.
[You may assume that the density is constant and units have been chosen so that
mass = area.] [12]

Solution. y =
√

4− x2, where 0 ≤ x ≤ 2, is the part of the circle of radius 2 centred at
the origin, i.e. x2 + y2 = 4, in the first quadrant (where both x and y are positive). Thus
the region in question is the quarter-disk enclosed by that circle that is also in the first
quadrant:

It is easy to see that the region is symmetric about the line y = x, so the centroid
must be on this line, i.e. we must have x̄ = ȳ. We will work out x̄ and thus get ȳ for free.

First, the mass of the region is just the area of one quarter of a circle of radius 2,

namely mass =
1

4
· π22 =

1

4
· 4π = π.

Second, we compute the x-moment. We will use the substitution u = 4 − x2, so

du = −2x dx and x dx =

(
−1

2

)
du, and change the limits as we go along:

x 0 2
u 4 0

.

x-moment =

∫ 2

0

x · (length of cross-section at x) dx

=

∫ 2

0

x
(√

4− x2 − 0
)
dx =

∫ 0

4

√
u

(
−1

2

)
du

=

(
−1

2

)
(−1)

∫ 4

0

u1/2 du =
1

2
· u

3/2

3/2

∣∣∣∣4
0

=
1

3
u3/2

∣∣∣∣4
0

=
1

3
43/2 − 1

3
03/2 =

8

3
− 0 =

8

3

It follows that x̄ =
x-moment

mass
=

8/3

π
=

8

3π
≈ 0.8488. As noted above, ȳ = x̄, so the

centroid of the given region is the point

(
8

3π
,

8

3π

)
≈ (0.8488, 0.8488). �
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Part Y. Do either one (1) of 5 or 6. [14]

5. Consider the curve y =
2

3
x3/2, where 0 ≤ x ≤ 3.

a. Find the arc-length of the curve. [7]

b. Find the area of the surface obtained by revolving the curve about the y-axis. [7]

Solutions. a. Note that
dy

dx
=

d

dx

(
2

3
x3/2

)
=

2

3
· 3

2
x1/2 = x1/2. We plug this into the

arc-length formula and integrate away, using the substitution u = x+ 1, so du = dx, and

change the limits as we go along:
x 0 3
u 1 4

.

arc-length =

∫ 3

0

ds =

∫ 3

0

√
1 +

(
dy

dx

)2

dx =

∫ 3

0

√
1 +

(
x1/2

)2
dx =

∫ 3

0

√
1 + x dx

=

∫ 4

1

√
u du =

∫ 4

1

u1/2 du =
u3/2

3/2

∣∣∣∣4
1

=
2

3
u3/2

∣∣∣∣4
1

=
2

3
43/2 − 2

3
13/2

=
2

3
8− 2

3
1 =

16

3
− 2

3
=

14

3
= 4.6̇ �

b. If the curve is revolved about the y-axis, the piece of its arc at x is revolved through a

circle with radius r = x− 0 = x. We plug this, along with
dy

dx
= x1/2, as obtained above,

into the area formula for a surface of revolution. This will use the same substitution that
was used in the solution to a above, with the added note that since u = x + 1, we have
x = u− 1.

surface area =

∫ 3

0

2πr ds =

∫ 3

0

2πx

√
1 +

(
dy

dx

)2

dx = 2π

∫ 3

0

x

√
1 +

(
x1/2

)2
dx

= 2π

∫ 3

0

x
√

1 + x dx = 2π

∫ 4

1

(u− 1)
√
u du = 2π

∫ 4

1

(u− 1)u1/2 du

= 2π

∫ 4

1

(
u3/2 − u1/2

)
du = 2π

(
u5/2

5/2
− u3/2

3/2

)∣∣∣∣4
1

= 2π

(
2

5
u5/2 − 2

3
u3/2

)∣∣∣∣4
1

= 2π

(
2

5
45/2 − 2

3
43/2

)
− 2π

(
2

5
15/2 − 2

3
13/2

)
= 2π

(
2

5
32− 2

3
8

)
− 2π

(
2

5
1− 2

3
1

)
= 2π

(
64

5
− 16

3

)
− 2π

(
2

5
− 2

3

)
= 2π

(
192− 80

15
− 6− 10

15

)
= 2π

116

15
=

232

15
π ≈ 48.59 �

9



6. Consider the triangle whose vertices are the points (0, 0), (1, 1), and (2, 0). Find the
volume of the solid obtained by revolving this triangle about . . .

a. . . . the x-axis. [7]

b. . . . the y-axis. [7]

Solutions. First, note that the line joining (0, 0) to (1, 1) is a piece of y = x, the line
joining (0, 0) to (2, 0) is a piece of y = 0, and the line joining (1, 1) to (2, 0) is a piece of
y = 2 − x or x = 2 − y, depending on how you look at it. Here are sketches of the two
solids:

a. (Shells) We will use the method of cylindrical shells to find the volume of the solid.
Since we revolved the region about the x-axis, we will use y as the variable. Note that
0 ≤ y ≤ 1 for this region. The cylindrical shell at y has radius r = y − 0 = y and height
or length that is the difference of the corresponding x-values on the line y = 2 − x and
y = x, i.e. h = (2− y)− y = 2− 2y. We plug these into the cylindrical shell formula and
integrate away:

V =

∫ 1

0

2πrh dy =

∫ 1

0

2πy(2− 2y) dy = 4π

∫ 1

0

(
y − y2

)
dy = 4π

(
y2

2
− y3

3

)∣∣∣∣1
0

= 4π

(
12

2
− 13

3

)
− 4π

(
02

2
− 03

3

)
= 4π

(
1

2
− 1

3

)
− 0 = 4π

1

6
=

2π

3
�

a. (Cunning) The solid obtained by revolving the triangle about the x-axis is just two
copies of the cone in 3f stuck together blunt end to blunt end. It should thus have twice

the volume of that cone, that is, V = 2 · π
3

=
2π

3
. �
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b. (Washers) We will use the washer method to find the volume of the solid. Since we
revolved the region about the y-axis, we will use y as the variable. Note that 0 ≤ y ≤ 1
for this region. The washer at y has outer radius R = (2− y)− 0 = 2− y and inner radius
– the radius of the hole – r = y − 0 = y. We plug these into the washer formula and
integrate away:

V =

∫ 1

0

π
(
R2 − r2

)
dy = π

∫ 1

0

(
(2− y)2 − y2

)
dy = π

∫ 1

0

(
4− 4y + y2 − y2

)
dy

= π

∫ 1

0

(4− 4y) dy = π

(
4y − 4

y2

2

)∣∣∣∣1
0

= π
(
4y − 2y2

)∣∣1
0

= π
(
4 · 1− 2 · 12

)
− π

(
4 · 0− 2 · 02

)
= 2π − 0 = 2π �

b. (Cunning) The solid obtained by revolving the triangle about the y-axis is what you
get when you take a cone with twice the linear dimensions (and hence 23 = 8 times the
volume) of the one in 3f and then remove two copies of the cone in 3f. (Look at the picture
and think about it . . . ) It should therefore have six (as 6 = 8 − 2) times the volume of

the cone in 3f, namely 6 · π
3

= 2π. �

Note: a can also be done with the disk/washer method and b can also be done with the
cylindrical shell method. This would mean using x as the variable of integration in each
case; the small complication in each case is that would have to break the integral up into
two pieces because the upper boundary of the original region is y = x when 0 ≤ x ≤ 1 and
y = 2− x when 1 ≤ x ≤ 2.
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Part Z. Do either one (1) of 7 or 8. [14]

7. Find the Taylor series at a = 0 of f(x) =
1

1 + 2x
and determine its radius and interval

of convergence.

Solution. Recall that the sum of a geometric series k + kz + kz2 + kz3 + · · · with first

term k and common ratio z, which converges exactly when |z| < 1, is
k

1− z
. The function

f(x) =
1

1 + 2x
=

1

1− (−2x)
can be thought of as the sum of such a series with k = 1 and

z = −2x, which means that it equals the series 1−2x+(2x)2−(2x)3+ · · · =
∞∑
n=0

(−1)n2nxn

when this series converges, which it does exactly when |−2x| < 1, i.e. exactly when |x| < 1

2
,

which is to say −1

2
< x <

1

2
. It follows that the Taylor series at a = 0 of f(x) =

1

1 + 2x
is

1 + (−2x) + (−2x)2 + (−2x)3 + · · · =
∞∑
n=0

(−1)n2nxn, whose radius of convergence is R =
1

2

and whose interval of convergence is

(
−1

2
,

1

2

)
. �

8. a. Use Taylor’s formula to find the Taylor series at a = 0 of g(x) = ex and determine
its radius and interval of convergence. [10]

b. How many terms of this Taylor series are needed to guarantee that if the partial

sum is evaluated at x = 1, it will be within 0.01 =
1

100
of g (1) = e1 = e? [4]

Solutions. a. As usual, we grind out the first few derivatives of f(x), evaluate them at
a = 0, and look for a pattern giving us a general formula.

n 0 1 2 3 · · ·
f (n)(x) ex ex ex ex · · ·
f (n)(0) 1 1 1 1 · · ·

It’s not hard to conclude that f (n)(0) = 1 for all n here. Plugging this into Taylor’s formula
tells us that the Taylor series of f(x) = ex at a = 0 is:

∞∑
n=0

f (n)(0)

n!
xn =

∞∑
n=0

1

n!
xn =

∞∑
n=0

xn

n!

It remains to determine the radius and interval of convergence of this power series. As
usual, we apply the Ratio Test:

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣∣
xn+1

(n+1)!
xn

n!

∣∣∣∣∣∣ = lim
n→∞

∣∣∣∣ xn+1

(n+ 1)!
· n!

xn

∣∣∣∣ = lim
n→∞

∣∣∣∣ x

n+ 1

∣∣∣∣ = 0 < 1

12



It follows by the Ratio Test that the series converges for all x, so its radius of convergence
is R =∞ and its interval of convergence is (−∞,∞). �

b. Recall from class, or §11.11 in the textbook, that if Tk(x) =
k∑

n=0

f (n)(0)

n!
xn is the Taylor

polynomial of degree k – otherwise known as the kth partial sum of the Taylor series of
f(x) at a = 0 – and Rk(x) = f(x) − Tk(x) is the corresponding remainder term, then

Rk(x) =
f (k+1)(c)

(k + 1)!
xk+1 for some c strictly between 0 and x.∗

In our case f(1) = e1 = e and the difference between this and the value of Tk(1) =
k∑

n=0

1n

n!
=

k∑
n=0

1

n!
is equal to Rk(1) =

f (k+1)(c)

(k + 1)!
1k+1 =

ec

(k + 1)!
for some c with 0 < c < 1.

Since ex is an increasing function, Rk(1) =
ec

(k + 1)!
<

e1

(k + 1)!
<

3

(k + 1)!
, so all we need

to do is find a k large enough to ensure that
3

(k + 1)!
< 0.01 =

1

100
. Cross-multiplying,

this boils down finding the first k such that 300 < (k + 1)!:

k 0 1 2 3 4 5 · · ·
(k + 1)! 1 2 6 24 120 720 · · ·

The first such k is therefore k = 5. It follows that Tk(1) =

k∑
n=0

1

n!
is guaranteed to be

within 0.01 of e whenever k ≥ 5. Since Tk(x) =
k∑

n=0

f (n)(0)

n!
xn includes the first k + 1

terms of the Taylor series of f(x) at a = 0, it follows that adding up at least 5 + 1 = 6
terms of the series suffices to compute e to within 0.01. �

[Total = 100]

∗ This is the Lagrange form of the remainder. Note that all this supposes that x is within the radius
of convergence of the Taylor series of f(x) at a = 0.
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Part W. Bonus problems! If you feel like it and have the time, do one or both of these.

∨∨∨∨∨∨. Consider the following real number:

a =
∞∑
n=0

1

10[2n]
=
∞∑
n=0

10−[2
n] = 0.11010001000000010 · · ·

[For k ≥ 1, there are 2k−1− 1 zeros between the kth and (k+ 1)st ones in the decimal
expansion of a.] Explain why a must be irrational. [1]

Solution. If a real number is rational, then past some point its decimal expansion

will repeat some finite sequence of digits forever. For example,
1

3
= 0.3̇ = 0.333333 · · ·

repeats the sequence “3”, while
31

70
= 0.4428571 = 0.4428571428571428571 · · · repeats the

sequence “428571”. Since the number a above has an increasing number of zeros between
successive ones in its decimal expansion, there is no point at which it will begin to repeat
some finite sequence of digits forever, and thus it can’t be rational. Hence, by definition,
it must be irrational. �

∧∧∧∧∧∧. Write a haiku (or several :-) touching on calculus or mathematics in general. [1]

What is a haiku?

seventeen in three:
five and seven and five of

syllables in lines

Solution. Here is another of your instructor’s haiku:

What is mathematics?

The art of drawing
necessary conclusions
about abstract things.

That’s all, folks! �

Enjoy your summer!
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