Mathematics 1120H - Calculus II: Integrals and Series
 Trent University, Winter 2019
 Assignment \#6
 Powerfully Serious Stuff
 Due on Friday, 5 April.

1. Find a power series that is equal to $f(x)=\frac{1}{1+x^{2}}$ when it converges and determine its radius and interval of convergence. [3]
Hint: Think of $\frac{1}{1+x^{2}}$ as the sum of a geometric series.
2. Use the power series you obtained in $\mathbf{1}$ to find a power series that is equal to $\arctan (x)$ when it converges and determine its radius and interval of convergence. [3]

Hint: Integrate term-by-term.
3. Use the power series you obtained in 2 to find a series summing to π. How many terms of this series would you need to ensure that the partial sum is within 0.001 of π ? [4]

Hint: Hmm - what is $\arctan (1)$ equal to? For the second part, read up on the finer details of alternating series.

Note: The series you (hopefully!) obtained in $\mathbf{2}$ is often called Gregory's series after James Gregory, who rediscovered it in 1668. It had been previously discovered by Madhava of Sangamagrama ($c .1340-c .1425$), a mathematician and astronomer from Kerala in southern India. He also obtained the series formula for π in $\mathbf{3}$. Both the power series and the series formula for π were also rediscovered by Gottfried Leibniz in the 1670s.

