Mathematics 1120H - Calculus II: Integrals and Series

Trent University, Winter 2019
Assignment \#4
Surface Area Error
Due on Friday, 8 March.
If you look it up, you will find that the surface area of a sphere of radius r is $S A=4 \pi r^{2}$. The following calculation comes to a different conclusion.

We will compute the surface area of the sphere by adding up (by integrating) the perimeters of horizontal cross-sections of the sphere, analogously to how we can [correctly!] find the volume of a sphere by adding up (by integrating) the areas of horizontal cross sections of the sphere.

The equation of a sphere of radius r centred at the origin is $x^{2}+y^{2}+z^{2}=r^{2}$. The cross-section of this sphere for a fixed z with $-r \leq z \leq r$ is a circle with equation $x^{2}+y^{2}=r^{2}-z^{2}$ and hence radius $R(z)=\sqrt{r^{2}-z^{2}}$ and perimeter $C(z)=2 \pi R(z)=2 \pi \sqrt{r^{2}-z^{2}}$. Therefore the surface area of the sphere should be $\int_{-r}^{r} C(z) d z=\int_{-r}^{r} 2 \pi \sqrt{r^{2}-z^{2}} d z$. Let's see what happens when we compute this integral. We will substitute $z=r \sin (\theta)$, so $d z=r \cos (\theta) d \theta$, and change the limits
 as we go along: $\begin{array}{ccc}z & -r & r \\ \theta & -\pi / 2 & \pi / 2\end{array}$.

$$
\begin{aligned}
\int_{-r}^{r} C(z) d z & =\int_{-r}^{r} 2 \pi \sqrt{r^{2}-z^{2}} d z=2 \pi \int_{-\pi / 2}^{\pi / 2} \sqrt{r^{2}-r^{2} \sin ^{2}(\theta)} r \cos (\theta) d \theta \\
& =2 \pi \int_{-\pi / 2}^{\pi / 2} \sqrt{r^{2} \cos ^{2}(\theta)} r \cos (\theta) d \theta=2 \pi \int_{-\pi / 2}^{\pi / 2} r^{2} \cos ^{2}(\theta) d \theta \\
& =2 \pi r^{2} \int_{-\pi / 2}^{\pi / 2} \frac{1}{2}(1+\cos (2 \theta)) d \theta=\left.\pi r^{2}\left(\theta+\frac{1}{2} \sin (2 \theta)\right)\right|_{-\pi / 2} ^{\pi / 2} \\
& =\pi r^{2}\left(\frac{\pi}{2}+\frac{1}{2} \cdot 0\right)-\pi r^{2}\left(-\frac{\pi}{2}+\frac{1}{2} \cdot 0\right)=\pi^{2} r^{2}
\end{aligned}
$$

This is only true in those universes where $\pi=4 \ldots$

1. Explain what is wrong in the calculation above. [4]
2. Use calculus to compute the surface area of a sphere of radius r correctly. [6]
