Mathematics 1120H - Calculus II: Integrals and Series
 Trent University, Winter 2019
 Assignment \#3
 Series, inverse squares, and trig
 Due on Friday, 15 February.

Your task on this assignment will be to show that:

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=1+\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+\cdots=\frac{\pi^{2}}{6}
$$

1. Verify the following trigonometric identity. (So long as x is not an integer multiple of π anyway! :-) [2]

$$
\frac{1}{\sin ^{2}(x)}=\frac{1}{4}\left[\frac{1}{\sin ^{2}\left(\frac{x}{2}\right)}+\frac{1}{\sin ^{2}\left(\frac{x+\pi}{2}\right)}\right]
$$

Hint: Use common trig identities and the fact that for any $t, \cos (t)=\sin \left(t+\frac{\pi}{2}\right)$.
2. Verify the following trigonometric summation formula for $m \geq 1$. [2]

$$
1=\frac{2}{4^{m}} \sum_{k=0}^{2^{m-1}-1} \frac{1}{\sin ^{2}\left(\frac{(2 k+1) \pi}{2^{m+1}}\right)}
$$

Hint: Apply the identity from question 1 repeatedly, starting from $1=\frac{1}{\sin ^{2}\left(\frac{\pi}{2}\right)}$. You may find the fact that $\sin (t)=\sin (\pi-t)$ comes in handy.
3. Verify the following limit formula, where $k \geq 0$ is fixed. [2]

$$
\lim _{m \rightarrow \infty} 2^{m} \sin \left(\frac{(2 k+1) \pi}{2^{m+1}}\right)=\frac{(2 k+1) \pi}{2}
$$

Hint: This is really just (a version of) $\lim _{t \rightarrow 0} \frac{\sin (t)}{t}=0 \ldots$
4. Take the limit as $m \rightarrow \infty$ of the identity in $\mathbf{2}$, and use $\mathbf{3}$ to show the following. [2]

$$
\sum_{k=0}^{\infty} \frac{1}{(2 k+1)^{2}}=\frac{\pi^{2}}{8}
$$

Note: Here you will need to interchange a limit with a sum, which you may do without having to justify it. (That's the one thing in this argument that is not really first-year-calculus-level material.)
5. Use 4 and some algebra to check that

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}
$$

is true. [2]
Hint: Split up $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ into the sums of the terms for even and odd n respectively and try to rewrite the sum of the terms for even n.

