Trent University, Summer 2018

Mathematics 1120H - Calculus II: Integrals and Series MATH 1120H Test Solutions

Monday, 9 July
Time: 50 minutes

Instructions

- Show all your work. Legibly, please! Simplify where you reasonably can.
- If you have a question, ask it!
- Use the back sides of all the pages for rough work or extra space.
- You may use a calculator and (all sides of) an aid sheet.

1. Compute any four (4) of integrals a-f. $[12=4 \times 3$ each $]$
a. $\int \tan ^{3}(x) \sec ^{3}(x) d x$
b. $\int_{0}^{1} \frac{1}{\sqrt{y}} d y$
c. $\int \frac{z^{2}-1}{z^{2}+2 z+1} d z$
d. $\int_{1}^{e} t \ln (t) d t$
e. $\int s^{2} e^{s} d s$
f. $\int_{0}^{3} \frac{r^{2}}{r^{3}+9} d r$

Solutions. a. We will use the trigonometric identity $\tan ^{2}(x)=\sec ^{2}(x)+1$, followed by the substitution $u=\sec (x)$, so $d u=\sec (x) \tan (x) d x$.

$$
\begin{aligned}
\int \tan ^{3}(x) \sec ^{3}(x) d x & =\int \tan ^{2}(x) \sec ^{2}(x) \sec (x) \tan (x) d x \\
& =\int\left(\sec ^{2}(x)-1\right) \sec ^{2}(x) \sec (x) \tan (x) d x=\int\left(u^{2}-1\right) u^{2} d u \\
& =\int\left(u^{4}-u^{2}\right) d u=\frac{1}{5} u^{5}-\frac{1}{3} u^{3}+C \\
& =\frac{1}{5} \sec ^{5}(x)-\frac{1}{3} \sec ^{3}(x)+C \quad \square
\end{aligned}
$$

b. $\int_{0}^{1} \frac{1}{\sqrt{y}} d y=\int_{0}^{1} y^{-1 / 2} d y=\left.\frac{y^{1 / 2}}{1 / 2}\right|_{0} ^{1}=\left.2 \sqrt{y}\right|_{0} ^{1}=2 \sqrt{1}-2 \sqrt{0}=2 \cdot 1-2 \cdot 0=2-0=2$

Note. The integral above is technically an indefinite integral because $\frac{1}{\sqrt{y}}$ has an asymptote at $y=0$, but this is one of the cases where one gets away with ignoring that fact because the antiderivative does not have an asymptote at 0 .
c. Algebra is our friend! We will also use the trivial substitution $w=z+1$, so $d w=d z$.

$$
\begin{aligned}
\int \frac{z^{2}-1}{z^{2}+2 z+1} d z & =\int \frac{(z-1)(z+1)}{(z+1)^{2}} d z=\int \frac{z-1}{z+1} d z=\int \frac{(z+1)-2}{z+1} d z \\
& =\int\left(\frac{z+1}{z+1}-\frac{2}{z+1}\right) d z=\int 1 d z-2 \int \frac{1}{z+1} d z \\
& =z-2 \int \frac{1}{w} d w=z-2 \ln (w)+C=z-2 \ln (z+1)+C
\end{aligned}
$$

d. We will use integration by parts with $u=\ln (t)$ and $v^{\prime}=t$, so $u^{\prime}=\frac{1}{t}$ and $v=\frac{t^{2}}{2}$.

$$
\begin{aligned}
\int_{1}^{e} t \ln (t) d t & =\left.\frac{t^{2}}{2} \ln (t)\right|_{1} ^{e}-\int_{1}^{e} \frac{1}{t} \cdot \frac{t^{2}}{2} d t=\frac{e^{2}}{2} \ln (e)-\frac{1^{2}}{2} \ln (1)-\frac{1}{2} \int_{1}^{e} t d t \\
& =\frac{e^{2}}{2} \cdot 1-\frac{1}{2} \cdot 0-\left.\frac{1}{2} \cdot \frac{t^{2}}{2}\right|_{1} ^{e}=\frac{e^{2}}{2}-0-\left[\frac{e^{2}}{4}-\frac{1^{2}}{4}\right]=\frac{e^{2}}{4}+\frac{1}{4}=\frac{e^{2}+1}{4}
\end{aligned}
$$

e. We will use integration by parts twice. The first will have $u=s^{2}$ and $v^{\prime}=e^{s}$, so $u^{\prime}=2 s$ and $v=e^{s}$; the second will have $x=2 s$ and $y^{\prime}=e^{s}$, so $x^{\prime}=2$ and $y=e^{s}$.

$$
\int s^{2} e^{s} d s=s^{2} e^{s}-\int 2 s e^{s} d s=s^{2} e^{s}-\left[2 s e^{s}-\int 2 e^{s} d s\right]=s^{2} e^{s}-2 s e^{s}+2 e^{s}+C
$$

f. We will use the substitution $w=r^{3}+9$, so $d w=3 r^{2} d r$ and $r^{2} d r=\frac{1}{3} d w$, and change the limits as we go along: $\begin{array}{ccc}r & 0 & 3 \\ w & 9 & 36\end{array}$.

$$
\int_{0}^{3} \frac{r^{2}}{r^{3}+9} d r=\int_{9}^{36} \frac{1}{w} \cdot \frac{1}{3} d w=\left.\frac{\ln (w)}{3}\right|_{9} ^{36}=\frac{\ln (36)}{3}-\frac{\ln (9)}{3}=\frac{\ln \left(\frac{36}{9}\right)}{3}=\frac{\ln (4)}{3}
$$

2. Do any two (2) of parts a-c. $[8=2 \times 4$ each]
a. Use a Right-Hand Rule sum to approximate $\int_{0}^{2} 2 x d x$, ensuring that it is within 1 of the exact value.
b. Find the area between the curves $y=\cos (x)$ and $y=\sin (x)$ for $0 \leq x \leq \pi$.
c. Compute $\int \sqrt{t} \cdot e^{\sqrt{t}} d t$.

Solutions. a. If we let $f(x)=2 x$, then $\left|f^{\prime}(x)\right|=|2|=2$ for all $x \in[0,2]$. We know from class that the difference between the Right-Hand Rule sum for n and the definite integral $\int_{a}^{b} f(x) d x$ it approximates is at most $M(b-a)^{2} / n$. In this case we have $a=0$ and $b=2$, and if we let $f(x)=2 x$, then $\left|f^{\prime}(x)\right|=|2|=2$ for all $x \in[0,2]$, so we can use $M=2$. It follows that we need to pick an n such that $2(2-0)^{2} / n=8 / n \leq 1$. To make this happen we need to have $n \geq 8$; to minimize the amount of arithmetic we need to do, we will use $n=8$. Then:

$$
\begin{array}{r}
\int_{0}^{2} 2 x d x \approx \frac{b-a}{n} \sum_{i=1}^{n} f\left(a+i \frac{b-a}{n}\right)=\frac{2-0}{8} \sum_{i=1}^{8} 2\left(0+i \frac{2-0}{8}\right)=\frac{1}{4} \sum_{i=1}^{8} \frac{4 i}{8} \\
\frac{1}{4} \sum_{i=1}^{8} \frac{1}{2} i=\frac{1}{8} \sum_{i=1}^{8} i=\frac{1}{8}(1+2+3+4+5+6+7+8)=\frac{36}{8}=\frac{9}{2}=4.5
\end{array}
$$

This is guaranteed to be within 1 of the exact value of the integral. As a check, since the integral is very easy to evaluate, we do so. $\int_{0}^{2} 2 x d x=\left.x^{2}\right|_{0} ^{2}=2^{2}-0^{2}=4$, so our approximation above is indeed within 1 of the correct value.
b. $\cos (0)=1$ and $\sin (0)=0$ while $\cos (\pi)=-1$ and $\sin (0)=0$. Between 0 and π, we have one point where $\cos (x)=\sin (x)$, namely $x=\frac{\pi}{4}$, where $\cos \left(\frac{\pi}{4}\right)=\sin \left(\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}$. It follows that $\cos (x) \geq \sin (x)$ for $0 \leq x \leq \frac{\pi}{4}$ and $\cos (x) \leq \sin (x)$ for $\frac{\pi}{4} \leq x \leq \pi$, and so the area between the curves for $0 \leq x \leq \pi$ is given by:

$$
\begin{aligned}
\text { Area }= & \int_{0}^{\pi / 4}[\cos (x)-\sin (x)] d x+\int_{\pi / 4}^{\pi}[\sin (x)-\cos (x)] d x \\
= & {[\sin (x)-(-\cos (x))]_{0}^{\pi / 4}+[(-\cos (x))-\sin (x)]_{\pi / 4}^{\pi} } \\
= & {\left[\sin \left(\frac{\pi}{4}\right)+\cos \left(\frac{\pi}{4}\right)\right]-[\sin (0)+\cos (0)] } \\
& +[-\cos (\pi)-\sin (\pi)]-\left[-\cos \left(\frac{\pi}{4}\right)-\sin \left(\frac{\pi}{4}\right)\right] \\
= & {\left[\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}\right]-[0+1]+[-(-1)-0]-\left[-\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}}\right] } \\
= & \frac{4}{\sqrt{2}}=2 \sqrt{2}
\end{aligned}
$$

c. We will use the substitution $t=s^{2}$, so $d t=2 s d u$; note that $s=\sqrt{t}$. Then

$$
\int \sqrt{t} \cdot e^{\sqrt{t}} d t=\int s e^{s} 2 s d s=2 \int s^{2} e^{s} d s
$$

which is twice the integral in $\mathbf{1 e}$, so, by the calculation done in that solution,

$$
\int \sqrt{t} \cdot e^{\sqrt{t}} d t=2\left[s^{2} e^{s}-2 s e^{s}+2 e^{s}\right]+C=2 t e^{\sqrt{t}}-4 \sqrt{t} e^{\sqrt{t}}+4 e^{\sqrt{t}}+C .
$$

3. Do either one (1) of parts a or b. [10]
a. The region in the first quadrant between the parabola $y=2 x-x^{2}$ and the x-axis is rotated all the way about the y-axis. Find the volume of the resulting solid.
b. A truncated pyramid is 50 m tall, has a square base with sides of length 100 m , and a square top with sides of length 50 m parallel to the base. Find the volume of the pyramid.

Solutions. a. Note that $y=2 x-x^{2}=x(x-2)$ is a parabola that opens downwards and has x-intercepts at $x=0$ and $x=2$.

We will use the method of cylindrical shells ("nested dolls") to find the volume of the given solid of revolution. Since the axis of revolution is the y-axis, the cylindrical shell at

x, for $0 \leq x \leq 2$, has radius $r=x-0=x$ and height $h=y-0=y=2 x-x^{2}$, and hence area $A(x)=2 \pi r h=2 \pi x\left(2 x-x^{2}\right)=2 \pi\left(2 x^{2}-x^{3}\right)$. It follows that the volume of the solid is given by:

$$
\begin{aligned}
V & =\int_{0}^{2} A(x) d x=\int_{0}^{2} 2 \pi\left(2 x^{2}-x^{3}\right) d x=\left.2 \pi\left(\frac{2}{3} x^{3}-\frac{1}{4} x^{4}\right)\right|_{0} ^{2} \\
& =2 \pi\left(\frac{2}{3} 2^{3}-\frac{1}{4} 2^{4}\right)-2 \pi\left(\frac{2}{3} 0^{3}-\frac{1}{4} 0 x^{4}\right)=2 \pi\left(\frac{16}{3}-4\right)-0=\frac{8}{3} \pi
\end{aligned}
$$

Note. Part a can also be done using the disk/washer method, but the algebra needed to find the radii involved is messier, as is the resulting integral.
b. The cross-section at height $h=0$ has side length $s(0)=100$ and the cross-section at height $h=50$ has side length $s(50)=50$. Consider the function $s(h)$. First, since pyramids have straight sides, it ought to be linear. Second, it must then have slope $\frac{50-100}{50-0}=\frac{-50}{50}=-1$, and we already know that $s(0)=100$. Thus $s(h)=-h+100$, and the square cross-section at height h, for $0 \leq h \leq 50$, has area $A(h)=[s(h)]^{2}=[-h+100]^{2}=$ $h^{2}-200 h+10000$. The volume of the truncated pyramid is therefore:

$$
\begin{aligned}
V & =\int_{0}^{50} A(h) d h=\int_{0}^{50}\left(h^{2}-200 h+10000\right) d h=\left.\left(\frac{1}{3} h^{3}-\frac{200}{2} h^{2}+10000 h\right)\right|_{0} ^{5} 0 \\
& =\left(\frac{1}{3} \cdot 50^{3}-100 \cdot 50^{2}+10000 \cdot 50\right)-\left(\frac{1}{3} \cdot 0^{3}-100 \cdot 0^{2}+10000 \cdot 0\right) \\
& =\frac{125000}{3}-250000+500000-0=\frac{7}{3} \cdot 125000=291666.6 \mathrm{~m}^{3}
\end{aligned}
$$

