Mathematics 1110 H - Calculus I: Limits, derivatives, and Integrals Trent University, Summer 2018

MATH 1120H Test

Monday, 9 July
Time: 50 minutes

Instructions

- Show all your work. Legibly, please! Simplify where you reasonably can.
- If you have a question, ask it!
- Use the back sides of all the pages for rough work or extra space.
- You may use a calculator and (all sides of) an aid sheet.

1. Compute any four (4) of integrals a-f. $[12=4 \times 3$ each]
a. $\int \tan ^{3}(x) \sec ^{3}(x) d x$
b. $\int_{0}^{1} \frac{1}{\sqrt{y}} d y$
c. $\int \frac{z^{2}-1}{z^{2}+2 z+1} d z$
d. $\int_{1}^{e} t \ln (t) d t$
e. $\int s^{2} e^{s} d s$
f. $\int_{0}^{3} \frac{r^{2}}{r^{3}+9} d r$
2. Do any two (2) of parts a-c. [$8=2 \times 4$ each]
a. Use a Right-Hand Rule sum to approximate $\int_{0}^{2} 2 x d x$, ensuring that it is within 1 of the exact value.
b. Find the area between the curves $y=\cos (x)$ and $y=\sin (x)$ for $0 \leq x \leq \pi$.
c. Compute $\int \sqrt{t} \cdot e^{\sqrt{t}} d t$.
3. Do either one (1) of parts a or b. [10]
a. The region in the first quadrant between the parabola $y=2 x-x^{2}$ and the x-axis is rotated all the way about the y-axis. Find the volume of the resulting solid.
b. A truncated pyramid is 50 m tall, has a square base with sides of length 100 m , and a square top with sides of length 50 m parallel to the base. Find the volume of the pyramid.

$$
\text { [Total }=30]
$$

