
Mathematics 1120H – Calculus II: Integrals and Series
Trent University, Summer 2018

Solutions to Assignment #2
The Gamma Function

One of the big uses of integrals in various parts of mathematics is to define functions
that are otherwise difficult to nail down. For example, consider the factorial function on
the non-negative integer, defined by 0! = 1 and (n + 1)! = n! · (n + 1). (It’s pretty easy
to check that if n ≥ 1 is an integer, then n! = 1 · 2 · 3 · . . . · (n − 1) · n.) The factorial
function turns up in many parts of mathematics, including algebra, calculus [wait till we
do series!], combinatorics, and number theory. The essentially discrete factorial function
has a continuous (also differential and integrable) counterpart, which also comes up a fair
bit in both applied and theoretical mathematics, namely the gamma function Γ(x). This
can be defined in a number of different ways, but the easiest definition to work with is in
terms of an integral:

Γ(x) =

∫ ∞
0

tx−1e−t dt = lim
a→∞

∫ a

0

tx−1e−t dt

This definition makes sense for all x > 0.

1. Verify that Γ(1) = 1. [3]

Solution. We’ll be using the substitution u = −t, so du = (−1) dt and dt = (−1) du.

Γ(1) = lim
a→∞

∫ a

0

t1−1e−t dt = lim
a→∞

∫ a

0

t0e−t dt = lim
a→∞

∫ a

0

e−t dt = lim
a→∞

∫ x=a

x=0

eu (−1) du

= lim
a→∞

(−1)eu|x=ax=0 = lim
a→∞

(−1)e−x
∣∣a
0

= lim
a→∞

[
(−1)e−a − (−1)e−0

]
= lim
a→∞

[
− 1

ea
+ 1

]
= −0 + 1 = 1 since ea →∞ as a→∞. �

2. Show that Γ(x+ 1) = xΓ(x) for all x > 0. [3]

Solution. We will first compute the definite integral

∫ a

0

txe−t dt, where x > 0, using

integration by parts with u = tx and v′ = e−t, so u′ = xtx−1 and v = (−1)e−t. Note that
x is just some constant as far as the variable in the integral, namely t, is concerned, and
see the solution to 1 above for the antiderivative of e−t.)∫ a

0

txe−t dt = txe−t
∣∣a
0
−
∫ a

0

xtx−1(−1)e−t dt =
(
axe−a − 0xe−0

)
− (−1)x

∫ a

0

tx−1e−t dt

= axe−a + x

∫ a

0

tx−1e−t dt (Since 0x = 0 if x > 0.)
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We plug this into the definition of Γ(x+ 1) and chug away. Suppose x > 0:

Γ(x+ 1) =

∫ ∞
0

t(x+1)−1e−t dt = lim
a→∞

∫ a

0

t(x+1)−1e−t dt = lim
a→∞

∫ a

0

txe−t dt

= lim
a→∞

[
axe−a + x

∫ a

0

tx−1e−t dt

]
=
[

lim
a→∞

axe−a
]

+

[
lim
a→∞

x

∫ a

0

tx−1e−t dt

]
= 0 + x lim

a→∞

∫ a

0

tx−1e−t dt (Since e−a → 0 faster than ax →∞ as a→∞.)

= x

∫ ∞
0

tx−1e−t dt = xΓ(x) �

3. Use 1 and 2 to show that Γ(n+ 1) = n! for every integer n ≥ 0. [2]

Solution. Recall that the factorial function is defined for all integers n ≥ 0 by 0! = 1
and (n+ 1)! = n! · (n+ 1).

First, by the solution to 1, we have that Γ(0 + 1) = Γ(1) = 1 = 0!, which takes care
of n = 0.

Second, suppose that we have verified that Γ(k + 1) = k! for some particular integer
k ≥ 0. Then, by the solution to 2, we have that Γ ((k + 1) + 1) = (k + 1)Γ(k + 1) =
(k + 1) · k! = (k + 1)!.

It follows from these two facts that Γ(n+ 1) = n! for every integer n ≥ 0:

Γ(0 + 1) = 0! by the first fact

=⇒ Γ(1 + 1) = Γ ((0 + 1) + 1) = (0 + 1)! = 1! by the second fact

=⇒ Γ(2 + 1) = Γ ((1 + 1) + 1) = (1 + 1)! = 2! by the second fact

=⇒ Γ(3 + 1) = Γ ((2 + 1) + 1) = (2 + 1)! = 3! by the second fact

...
...

The argument above is technically a proof by induction: the first fact is the base step
of the proof, and the second fact is the inductive step of the proof. �

4. What is Γ
(
1
2

)
? [2]

Solution. Γ
(
1
2

)
=
√
π. Why? Well, one could just look it up, but let’s go whole hog

and do it. Well, not quite whole hog – we’ll suppress the limits which are technically part
of evaluating improper integrals and toss ∞ around like it was a number.

Γ

(
1

2

)
=

∫ ∞
0

t
1
2−1e−t dt =

∫ ∞
0

t−1/2e−t dt =

∫ ∞
0

1√
t
· e−t dt

=

∫ ∞
0

e−u
2

2 du
Using the substitution u =

√
t,

so du = 1
2
√
t
dt and 1√

t
dt = 2 du.

Also: x 0 ∞
u 0 ∞

= 2

∫ ∞
0

e−u
2

du =

∫ ∞
−∞

e−u
2

du Since e−u
2

= e−(−u)
2

for all u.
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It remains to show that Γ

(
1

2

)
=

∫ ∞
−∞

e−u
2

du works out to
√
π. It is actually easier

to show that

(∫ ∞
−∞

e−u
2

du

)2

= π, but this does require a bit of multivariate calculus and

the use of polar coordinates.
Without getting into the technicalities, two key facts that will be exploited below are

that in multivariate calculus we usually try to handle things one variable at a time and that
a function of one independent variable is simply a constant as far as another independent
variable is concerned. We will also use the fact that if we do the change of coordinate
systems in the plane from Cartesian coordinates to polar coordinates via x = r cos(θ) and
y = r sin(θ), then dx dy gets replaced by r dr, dθ. (Feel free to look it up or ask about it.)

(∫ ∞
−∞

e−u
2

du

)2

=

(∫ ∞
−∞

e−x
2

dx

)(∫ ∞
−∞

e−y
2

dy

)
=

∫ ∞
−∞

(∫ ∞
−∞

e−x
2

dx

)
e−y

2

dy

=

∫ ∞
−∞

∫ ∞
−∞

e−x
2

e−y
2

dx dy =

∫ ∞
−∞

∫ ∞
−∞

e−x
2−y2 dx dy

=

∫ 2π

0

∫ ∞
0

e−r
2

r dr dθ
Substitute w = −r2, so dw = −2r dr and

r dr = − 1
2 dw, with

r 0 ∞
w 0 −∞ .

=

∫ 2π

0

∫ −∞
0

ew
(
−1

2

)
dw dθ =

∫ 2π

0

1

2

∫ 0

−∞
ew dw dθ

=
1

2

∫ 2π

0

[
ew|0−∞

]
dθ =

1

2

∫ 2π

0

[
e0 − e−∞

]
dθ =

1

2

∫ 2π

0

[1− 0] dθ

=
1

2

∫ 2π

0

1 dθ =
1

2
θ

∣∣∣∣2π
0

=
1

2
· 2π − 1

2
· 0 = π

It follows that Γ

(
1

2

)
=

∫ ∞
−∞

e−u
2

du =
√
π. �
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