# Mathematics 1120H - Calculus II: Integrals and Series <br> Trent University, Summer 2018 <br> <br> Quizzes 

 <br> <br> Quizzes}

Quiz \#1. Wednesday, 20 June. [20 minutes]
Compute each of the following integrals.

1. $\int \sec ^{2}(x) \tan ^{2}(x) d x[1]$
2. $\int \sec ^{4}(x) d x[1.5]$
3. $\int \sin ^{2}(x) \cos ^{2}(x) d x$ [2.5]

Quiz \#2. Monday, 25 June. [12 minutes]

1. Compute $\int \frac{x^{3}}{\sqrt{1-x^{2}}} d x$. [5]

Quiz \#3. Wednesday, 28 June. [12 minutes]

1. Compute $\int \frac{12}{x^{3}+4 x} d x$. [5]

Quiz \#4. Wednesday, 4 July. [12 minutes]
Do one (1) of the following three questions.

1. How big does $n$ have to be to guarantee that the Right-Hand Rule sum for $\int_{0}^{2}(x+1) d x$ is within $0.1=\frac{1}{10}$ of the exact value of the integral? [5]
2. How big does $n$ have to be to guarantee that the Trapezoid Rule sum for $\int_{0}^{2}(x+1) d x$ is within $0.1=\frac{1}{10}$ of the exact value of the integral? [5]
3. The game of trigball is played with a double-pointed "ball" that is $10 \pi \mathrm{~cm}$ long*. The cross-sections perpendicular to the axis of symmetry (which runs from one pointy end to the other) are circles of radius $10 \sin (x) \mathrm{cm}$, where $x$ is the distance (in cm ) that cross section is from one end of the ball. Find the volume of a trigball. [5]

Quiz \#5. Wednesday, 11 July. [10 minutes]

1. Find the arc-length of $y=\frac{2}{3} x^{3 / 2}$ for $0 \leq x \leq 3$. [5]

Quiz \#6. Monday, 16 July. [15 minutes]
Find the limit of each of the following sequences, if it exists. If the limit does not exist, give an informal explanation for why it doesn't.

1. $a_{n}=(-1)^{n}[1]$
2. $b_{n}=\frac{n}{n^{2}+1}[1]$
3. $c_{n}=\arctan (n)[1]$
4. $d_{n}=\frac{n!}{2^{n}}[2]$

* The points are sharp. Please be careful when playing with a trigball.

Quiz \#7. Wednesday, 18 July. [20 minutes]
Determine whether each of the following series converges or not.

1. $\sum_{n=0}^{\infty} \frac{2^{n-1}}{e^{n+1}}[1]$
2. $\sum_{n=2}^{\infty} \frac{1}{n^{2}-1}[1]$
3. $\sum_{n=0}^{\infty} \frac{n}{\sqrt{n^{2}+1}}[1.5]$
4. $\sum_{n=0}^{\infty} \frac{\cos (n)}{n \ln \left(2^{n}+1\right)}[1.5]$

Quiz \#8. Monday, 23 July. [20 minutes]
Determine whether each of the following series converges or not.

1. $\sum_{n=0}^{\infty} \frac{4^{n}+1}{5^{n}+2}[1]$
2. $\sum_{n=1}^{\infty}\left[\ln \left(e^{-1 / n}\right)\right]^{n}$ [2]
3. $\sum_{n=2}^{\infty}\left(\frac{7}{n}\right)^{n}$ [2]

Quiz \#9. Wednesday, 25 July. [20 minutes]
Find the radius and interval of convergence of each of the following power series.

1. $\sum_{n=1}^{\infty} \frac{x^{n}}{n^{n}}[1.5]$
2. $\sum_{n=0}^{\infty} \frac{5^{n+1}}{2^{n}} x^{n}[1.5]$
3. $\sum_{n=0}^{\infty} \frac{n+3}{2 n+1} x^{n}$ [2]
